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Overview MA 	��	
Numerical PDEs

This course is designed to respond to the needs of the aeronautical engineering curricula
by providing an applications oriented introduction to the �nite di
erence method of solving
partial di
erential equations arising from various physical phenomenon� This course will
emphasize design� coding� and debugging programs written by the students in order to �x
ideas presented in the lectures� In addition� the course will serve as an introduction to
a course on analytical solutions of PDE�s� Elementary techniques including separation of
variables� and the method of characteristics will be used to solve highly idealized problems
for the purpose of gaining physical insight into the physical processes involved� as well as to
serve as a theoretical basis for the numerical work which follows�
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� Introduction and Applications

This section is devoted to basic concepts in partial di
erential equations� We start the
chapter with de�nitions so that we are all clear when a term like linear partial di
erential
equation �PDE� or second order PDE is mentioned� After that we give a list of physical
problems that can be modelled as PDEs� An example of each class �parabolic� hyperbolic and
elliptic� will be derived in some detail� Several possible boundary conditions are discussed�

��� Basic Concepts and De�nitions

De�nition �� A partial di
erential equation �PDE� is an equation containing partial deriva�
tives of the dependent variable�
For example� the following are PDEs

ut � cux � � �������

uxx � uyy � f�x� y� �������

��x� y�uxx � �uxy � 	x�uyy � �ex �����	�

uxuxx � �uy�
� � � �������

�uxx�
� � uyy � a�x� y�ux � b�x� y�u � � � �����
�

Note� We use subscript to mean di
erentiation with respect to the variables given� e�g�

ut �
�u

�t
� In general we may write a PDE as

F �x� y� � � � � u� ux� uy� � � � � uxx� uxy� � � �� � � �������

where x� y� � � � are the independent variables and u is the unknown function of these variables�
Of course� we are interested in solving the problem in a certain domain D� A solution is a
function u satisfying �������� From these many solutions we will select the one satisfying
certain conditions on the boundary of the domain D� For example� the functions

u�x� t� � ex�ct

u�x� t� � cos�x� ct�

are solutions of �������� as can be easily veri�ed� We will see later �section ���� that the
general solution of ������� is any function of x� ct�

De�nition �� The order of a PDE is the order of the highest order derivative in the equation�
For example ������� is of �rst order and ������� � �����
� are of second order�

De�nition 	� A PDE is linear if it is linear in the unknown function and all its derivatives
with coe�cients depending only on the independent variables�

�



For example ������� � �����	� are linear PDEs�

De�nition �� A PDE is nonlinear if it is not linear� A special class of nonlinear PDEs will
be discussed in this book� These are called quasilinear�

De�nition 
� A PDE is quasilinear if it is linear in the highest order derivatives with coe��
cients depending on the independent variables� the unknown function and its derivatives of
order lower than the order of the equation�
For example ������� is a quasilinear second order PDE� but �����
� is not�

We shall primarily be concerned with linear second order PDEs which have the general
form

A�x� y�uxx�B�x� y�uxy�C�x� y�uyy�D�x� y�ux�E�x� y�uy�F �x� y�u � G�x� y� � �������

De�nition �� A PDE is called homogeneous if the equation does not contain a term inde�
pendent of the unknown function and its derivatives�
For example� in ������� if G�x� y� � �� the equation is homogenous� Otherwise� the PDE is
called inhomogeneous�
Partial di
erential equations are more complicated than ordinary di
erential ones� Recall
that in ODEs� we �nd a particular solution from the general one by �nding the values of
arbitrary constants� For PDEs� selecting a particular solution satisfying the supplementary
conditions may be as di�cult as �nding the general solution� This is because the general
solution of a PDE involves an arbitrary function as can be seen in the next example� Also�
for linear homogeneous ODEs of order n� a linear combination of n linearly independent
solutions is the general solution� This is not true for PDEs� since one has an in�nite number
of linearly independent solutions�

Example

Solve the linear second order PDE
u����� �� � � �������

If we integrate this equation with respect to �� keeping � �xed� we have

u� � f���

�Since � is kept �xed� the integration constant may depend on ���
A second integration yields �upon keeping � �xed�

u��� �� �
Z
f���d� �G���

Note that the integral is a function of �� so the solution of ������� is

u��� �� � F ��� �G��� � �������

To obtain a particular solution satisfying some boundary conditions will require the deter�
mination of the two functions F and G� In ODEs� on the other hand� one requires two
constants� We will see later that ������� is the one dimensional wave equation describing the
vibration of strings�

�



Problems

�� Give the order of each of the following PDEs

a� uxx � uyy � �
b� uxxx � uxy � a�x�uy � log u � f�x� y�
c� uxxx � uxyyy � a�x�uxxy � u� � f�x� y�
d� u uxx � u�yy � eu � �
e� ux � cuy � d

�� Show that
u�x� t� � cos�x� ct�

is a solution of
ut � cux � �

	� Which of the following PDEs is linear� quasilinear� nonlinear� If it is linear� state
whether it is homogeneous or not�

a� uxx � uyy � �u � x�

b� uxy � u
c� u ux � x uy � �
d� u�x � log u � �xy
e� uxx � �uxy � uyy � cos x
f� ux�� � uy� � uxx
g� �sin ux�ux � uy � ex

h� �uxx � �uxy � �uyy � 	u � �
i� ux � uxuy � uxy � �

�� Find the general solution of
uxy � uy � �

�Hint� Let v � uy�


� Show that
u � F �xy� � xG�

y

x
�

is the general solution of
x�uxx � y�uyy � �

	



��� Applications

In this section we list several physical applications and the PDE used to model them� See�
for example� Fletcher ������� Haltiner and Williams ������� and Pedlosky �������

For the heat equation �parabolic� see de�nition � later��

ut � kuxx �in one dimension� �������

the following applications

�� Conduction of heat in bars and solids

�� Di
usion of concentration of liquid or gaseous substance in physical chemistry

	� Di
usion of neutrons in atomic piles

�� Di
usion of vorticity in viscous �uid �ow


� Telegraphic transmission in cables of low inductance or capacitance

�� Equilization of charge in electromagnetic theory�

�� Long wavelength electromagnetic waves in a highly conducting medium

�� Slow motion in hydrodynamics

�� Evolution of probability distributions in random processes�

Laplace�s equation �elliptic�

uxx � uyy � � �in two dimensions� �������

or Poisson�s equation
uxx � uyy � S�x� y� �����	�

is found in the following examples

�� Steady state temperature

�� Steady state electric �eld �voltage�

	� Inviscid �uid �ow

�� Gravitational �eld�

Wave equation �hyperbolic�

utt � c�uxx � � �in one dimension� �������

appears in the following applications

�



�� Linearized supersonic air�ow

�� Sound waves in a tube or a pipe

	� Longitudinal vibrations of a bar

�� Torsional oscillations of a rod


� Vibration of a �exible string

�� Transmission of electricity along an insulated low�resistance cable

�� Long water waves in a straight canal�

Remark� For the rest of this book when we discuss the parabolic PDE

ut � kr�u �����
�

we always refer to u as temperature and the equation as the heat equation� The hyperbolic
PDE

utt � c�r�u � � �������

will be referred to as the wave equation with u being the displacement from rest� The elliptic
PDE

r�u � Q �������

will be referred to as Laplace�s equation �if Q � �� and as Poisson�s equation �if Q �� ���
The variable u is the steady state temperature� Of course� the reader may want to think
of any application from the above list� In that case the unknown u should be interpreted
depending on the application chosen�

In the following sections we give details of several applications� The �rst example leads
to a parabolic one dimensional equation� Here we model the heat conduction in a wire �or a
rod� having a constant cross section� The boundary conditions and their physical meaning
will also be discussed� The second example is a hyperbolic one dimensional wave equation
modelling the vibrations of a string� We close with a three dimensional advection di
usion
equation describing the dissolution of a substance into a liquid or gas� A special case �steady
state di
usion� leads to Laplace�s equation�

��� Conduction of Heat in a Rod

Consider a rod of constant cross section A and length L �see Figure �� oriented in the x
direction�
Let e�x� t� denote the thermal energy density or the amount of thermal energy per unit
volume� Suppose that the lateral surface of the rod is perfectly insulated� Then there is no
thermal energy loss through the lateral surface� The thermal energy may depend on x and t
if the bar is not uniformly heated� Consider a slice of thickness �x between x and x ��x�






0 Lx x+∆ x

A

Figure �� A rod of constant cross section

If the slice is small enough then the total energy in the slice is the product of thermal energy
density and the volume� i�e�

e�x� t�A�x � ���	���

The rate of change of heat energy is given by

�

�t
�e�x� t�A�x� � ���	���

Using the conservation law of heat energy� we have that this rate of change per unit time
is equal to the sum of the heat energy generated inside per unit time and the heat energy
�owing across the boundaries per unit time� Let 	�x� t� be the heat �ux �amount of thermal
energy per unit time �owing to the right per unit surface area�� Let S�x� t� be the heat
energy per unit volume generated per unit time� Then the conservation law can be written
as follows

�

�t
�e�x� t�A�x� � 	�x� t�A� 	�x ��x� t�A� S�x� t�A�x � ���	�	�

This equation is only an approximation but it is exact at the limit when the thickness of the
slice �x� �� Divide by A�x and let �x� �� we have

�

�t
e�x� t� � � lim

�x��

	�x ��x� t�� 	�x� t�

�x� �z �
�
���x� t�

�x

�S�x� t� � ���	���

We now rewrite the equation using the temperature u�x� t�� The thermal energy density
e�x� t� is given by

e�x� t� � c�x�
�x�u�x� t� ���	�
�

where c�x� is the speci�c heat �heat energy to be supplied to a unit mass to raise its tempera�
ture by one degree� and 
�x� is the mass density� The heat �ux is related to the temperature
via Fourier�s law

	�x� t� � �K�u�x� t�

�x
���	���

where K is called the thermal conductivity� Substituting ���	�
� � ���	��� in ���	��� we obtain

c�x�
�x�
�u

�t
�

�

�x

�
K
�u

�x

�
� S � ���	���

For the special case that c� 
� K are constants we get

ut � kuxx �Q ���	���

�



where

k �
K

c

���	���

and

Q �
S

c

���	����

��� Boundary Conditions

In solving the above model� we have to specify two boundary conditions and an initial
condition� The initial condition will be the distribution of temperature at time t � �� i�e�

u�x� �� � f�x� �

The boundary conditions could be of several types�

�� Prescribed temperature �Dirichlet b�c��

u��� t� � p�t�

or
u�L� t� � q�t� �

�� Insulated boundary �Neumann b�c��

�u��� t�

�n
� �

where
�

�n
is the derivative in the direction of the outward normal� Thus at x � �

�

�n
� � �

�x

and at x � L
�

�n
�

�

�x

�see Figure ���

n n

x

Figure �� Outward normal vector at the boundary

This condition means that there is no heat �owing out of the rod at that boundary�

�



	� Newton�s law of cooling

When a one dimensional wire is in contact at a boundary with a moving �uid or gas�
then there is a heat exchange� This is speci�ed by Newton�s law of cooling

�K���
�u��� t�

�x
� �Hfu��� t�� v�t�g

where H is the heat transfer �convection� coe�cient and v�t� is the temperature of the sur�
roundings� We may have to solve a problem with a combination of such boundary conditions�
For example� one end is insulated and the other end is in a �uid to cool it�

�� Periodic boundary conditions

We may be interested in solving the heat equation on a thin circular ring �see �gure 	��

x=0 x=L

Figure 	� A thin circular ring

If the endpoints of the wire are tightly connected then the temperatures and heat �uxes at
both ends are equal� i�e�

u��� t� � u�L� t�

ux��� t� � ux�L� t� �

�



Problems

�� Suppose the initial temperature of the rod was

u�x� �� �

�
�x � � x � ���
���� x� ��� � x � �

and the boundary conditions were

u��� t� � u��� t� � � �

what would be the behavior of the rod�s temperature for later time�

�� Suppose the rod has a constant internal heat source� so that the equation describing the
heat conduction is

ut � kuxx �Q� � � x � � �

Suppose we �x the temperature at the boundaries

u��� t� � �

u��� t� � � �

What is the steady state temperature of the rod� �Hint� set ut � � ��

	� Derive the heat equation for a rod with thermal conductivity K�x��

�� Transform the equation
ut � k�uxx � uyy�

to polar coordinates and specialize the resulting equation to the case where the function u
does NOT depend on �� �Hint� r �

p
x� � y�� tan � � y�x�


� Determine the steady state temperature for a one�dimensional rod with constant thermal
properties and

a� Q � �� u��� � �� u�L� � �
b� Q � �� ux��� � �� u�L� � �
c� Q � �� u��� � �� ux�L� � 	

d�
Q

k
� x�� u��� � �� ux�L� � �

e� Q � �� u��� � �� ux�L� � u�L� � �

�



��� A Vibrating String

Suppose we have a tightly stretched string of length L� We imagine that the ends are tied
down in some way �see next section�� We describe the motion of the string as a result of
disturbing it from equilibrium at time t � �� see Figure ��

0 x

u(x)

L

x axis

Figure �� A string of length L

We assume that the slope of the string is small and thus the horizontal displacement can
be neglected� Consider a small segment of the string between x and x � �x� The forces
acting on this segment are along the string �tension� and vertical �gravity�� Let T �x� t� be
the tension at the point x at time t� if we assume the string is �exible then the tension is in
the direction tangent to the string� see Figure 
�

0

x axis

u(x) u(x+dx)

x+dxx L

T(x+dx)

T(x)

Figure 
� The forces acting on a segment of the string

The slope of the string is given by

tan � � lim
�x��

u�x��x� t�� u�x� t�

�x
�
�u

�x
� ���
���

Thus the sum of all vertical forces is�

T �x ��x� t� sin ��x ��x� t�� T �x� t� sin ��x� t� � 
��x��xQ�x� t� ���
���

where Q�x� t� is the vertical component of the body force per unit mass and 
o�x� is the
density� Using Newton�s law

F � ma � 
��x��x
��u

�t�
� ���
�	�

Thus


��x�utt �
�

�x
�T �x� t� sin ��x� t�� � 
��x�Q�x� t� ���
���

For small angles ��
sin � � tan � ���
�
�

Combining ���
��� and ���
�
� with ���
��� we obtain


��x�utt � �T �x� t�ux�x � 
��x�Q�x� t� ���
���

��



For perfectly elastic strings T �x� t� 	� T�� If the only body force is the gravity then

Q�x� t� � �g ���
���

Thus the equation becomes
utt � c�uxx � g ���
���

where c� � T��
��x� �
In many situations� the force of gravity is negligible relative to the tensile force and thus we
end up with

utt � c�uxx � ���
���

��� Boundary Conditions

If an endpoint of the string is �xed� then the displacement is zero and this can be written as

u��� t� � � �������

or
u�L� t� � � � �������

We may vary an endpoint in a prescribed way� e�g�

u��� t� � b�t� � �����	�

A more interesting condition occurs if the end is attached to a dynamical system �see e�g�
Haberman ����

T�
�u��� t�

�x
� k �u��� t�� uE�t�� � �������

This is known as an elastic boundary condition� If uE�t� � �� i�e� the equilibrium position
of the system coincides with that of the string� then the condition is homogeneous�

As a special case� the free end boundary condition is

�u

�x
� � � �����
�

Since the problem is second order in time� we need two initial conditions� One usually has

u�x� �� � f�x�

ut�x� �� � g�x�

i�e� given the displacement and velocity of each segment of the string�

��



Problems

�� Derive the telegraph equation

utt � aut � bu � c�uxx

by considering the vibration of a string under a damping force proportional to the velocity
and a restoring force proportional to the displacement�

�� Use Kircho
�s law to show that the current and potential in a wire satisfy

ix � C vt �Gv � �
vx � L it �Ri � �

where i � current� v � L � inductance potential� C � capacitance� G � leakage conduc�
tance� R � resistance�

b� Show how to get the one dimensional wave equations for i and v from the above�

��



��	 Di
usion in Three Dimensions

Di
usion problems lead to partial di
erential equations that are similar to those of heat
conduction� Suppose C�x� y� z� t� denotes the concentration of a substance� i�e� the mass
per unit volume� which is dissolving into a liquid or a gas� For example� pollution in a lake�
The amount of a substance �pollutant� in the given domain V with boundary � is given byZ

V
C�x� y� z� t�dV � �������

The law of conservation of mass states that the time rate of change of mass in V is equal to
the rate at which mass �ows into V minus the rate at which mass �ows out of V plus the
rate at which mass is produced due to sources in V � Let�s assume that there are no internal
sources� Let �q be the mass �ux vector� then �q � �n gives the mass per unit area per unit time
crossing a surface element with outward unit normal vector �n�

d

dt

Z
V
CdV �

Z
V

�C

�t
dV � �

Z
�
�q � �n dS� �������

Use Gauss divergence theorem to replace the integral on the boundaryZ
�
�q � �n dS �

Z
V
div �q dV� �����	�

Therefore
�C

�t
� �div �q� �������

Fick�s law of di
usion relates the �ux vector �q to the concentration C by

�q � �DgradC � C�v �����
�

where �v is the velocity of the liquid or gas� and D is the di
usion coe�cient which may
depend on C� Combining ������� and �����
� yields

�C

�t
� div �DgradC�� div�C �v�� �������

If D is constant then
�C

�t
� Dr�C �r � �C �v� � �������

If �v is negligible or zero then
�C

�t
� Dr�C �������

which is the same as ���	����
If D is relatively negligible then one has a �rst order PDE

�C

�t
� �v � rC � C div �v � � � �������

�	



At steady state �t large enough� the concentration C will no longer depend on t� Equation
������� becomes

r � �DrC��r � �C �v� � � ��������

and if �v is negligible or zero then

r � �DrC� � � ��������

which is Laplace�s equation�

��



� Separation of Variables�Homogeneous Equations

In this chapter we show that the process of separation of variables solves the one dimensional
heat equation subject to various homogeneous boundary conditions and solves Laplace�s
equation� All problems in this chapter are homogeneous� We will not be able to give the
solution without the knowledge of Fourier series� Therefore these problems will not be fully
solved until Chapter � after we discuss Fourier series�

��� Parabolic equation in one dimension

In this section we show how separation of variables is applied to solve a simple problem of
heat conduction in a bar whose ends are held at zero temperature�

ut � kuxx� �������

u��� t� � �� zero temperature on the left� �������

u�L� t� � �� zero temperature on the right� �����	�

u�x� �� � f�x�� given initial distribution of temperature� �������

Note that the equation must be linear and for the time being also homogeneous �no heat
sources or sinks�� The boundary conditions must also be linear and homogeneous� In Chapter
� we will show how inhomogeneous boundary conditions can be transferred to a source�sink
and then how to solve inhomogeneous partial di
erential equations� The method there
requires the knowledge of eigenfunctions which are the solutions of the spatial parts of the
homogeneous problems with homogeneous boundary conditions�

The idea of separation of variables is to assume a solution of the form

u�x� t� � X�x�T �t�� �����
�

that is the solution can be written as a product of a function of x and a function of t�
Di
erentiate �����
� and substitute in ������� to obtain

X�x� �T �t� � kX ���x�T �t�� �������

where prime denotes di
erentiation with respect to x and dot denotes time derivative� In
order to separate the variables� we divide the equation by kX�x�T �t��

�T �t�

kT �t�
�

X ���x�
X�x�

� �������

The left hand side depends only on t and the right hand side only on x� If we �x one variable�
say t� and vary the other� then the left hand side cannot change �t is �xed� therefore the
right hand side cannot change� This means that each side is really a constant� We denote
that so called separation constant by �
� Now we have two ordinary di
erential equations

X ���x� � �
X�x�� �������

�




�T �t� � �k
T �t�� �������

Remark� This does NOT mean that the separation constant is negative�
The homogeneous boundary conditions can be used to provide boundary conditions for
�������� These are

X���T �t� � ��

X�L�T �t� � ��

Since T �t� cannot be zero �otherwise the solution u�x� t� � X�x�T �t� is zero�� then

X��� � �� ��������

X�L� � �� ��������

First we solve ������� subject to ������������������ This can be done by analyzing the following
	 cases� �We will see later that the separation constant 
 is real��

case �� 
 � ��
The solution of ������� is

X�x� � Ae
p
�x �Be�

p
�x� ��������

where � � �
 � ��
Recall that one should try erx which leads to the characteristic equation r� � �� Using the
boundary conditions� we have two equations for the parameters A� B

A �B � �� ������	�

Ae
p
�L �Be�

p
�L � �� ��������

Solve ������	� for B and substitute in ��������

B � �A

A
�
e
p
�L � e�

p
�L
�
� ��

Note that
e
p
�L � e�

p
�L � � sinh

p
�L �� �

Therefore A � � which implies B � � and thus the solution is trivial �the zero solution��
Later we will see the use of writing the solution of �������� in one of the following four

forms
X�x� � Ae

p
�x �Be�

p
�x

� C cosh
p
�x�D sinh

p
�x

� E cosh
�p

�x � F
�

� G sinh
�p

�x �H
�
�

������
�

In �gure � we have plotted the hyperbolic functions sinhx and cosh x� so one can see that
the hyperbolic sine vanishes only at one point and the hyperbolic cosine never vanishes�

case �� 
 � ��

��



cosh(x),sinh(x)

x

y

(0,1)

Figure �� sinhx and cosh x

This leads to
X ���x� � �� ��������

X��� � ��

X�L� � ��

The ODE has a solution
X�x� � Ax �B� ��������

Using the boundary conditions
A � � �B � ��

A � L �B � ��

we have
B � ��

A � ��

and thus
X�x� � ��

which is the trivial solution �leads to u�x� t� � �� and thus of no interest�

case 	� 
 � ��
The solution in this case is

X�x� � A cos
p

x �B sin

p

x� ��������

��



The �rst boundary condition leads to

X��� � A � � �B � � � �

which implies
A � ��

Therefore� the second boundary condition �with A � �� becomes

B sin
p

L � �� ��������

Clearly B �� � �otherwise the solution is trivial again�� therefore

sin
p

L � ��

and thus p

L � n�� n � �� �� � � � �since 
 � �� then n 
 ��

and


n �
	
n�

L


�

� n � �� �� � � � ��������

These are called the eigenvalues� The solution �������� becomes

Xn�x� � Bn sin
n�

L
x� n � �� �� � � � ��������

The functions Xn are called eigenfunctions or modes� There is no need to carry the constants
Bn� since the eigenfunctions are unique only to a multiplicative scalar �i�e� if Xn is an
eigenfunction then KXn is also an eigenfunction��

The eigenvalues 
n will be substituted in ������� before it is solved� therefore

�Tn�t� � �k
	
n�

L


�

Tn� ��������

The solution is

Tn�t� � e�k�
n�
L �

�
t� n � �� �� � � � ������	�

Combine �������� and ������	� with �����
�

un�x� t� � e�k�
n�
L �

�
t sin

n�

L
x� n � �� �� � � � ��������

Since the PDE is linear� the linear combination of all the solutions un�x� t� is also a solution

u�x� t� �
�X
n��

bne
�k�n�L �

�
t sin

n�

L
x� ������
�

This is known as the principle of superposition� As in power series solution of ODEs� we
have to prove that the in�nite series converges �see section 	�
�� This solution satis�es the
PDE and the boundary conditions� To �nd bn� we must use the initial condition and this
will be done after we learn Fourier series�

��



��� Other Homogeneous Boundary Conditions

If one has to solve the heat equation subject to one of the following sets of boundary condi�
tions

��
u��� t� � �� �������

ux�L� t� � �� �������

��
ux��� t� � �� �����	�

u�L� t� � �� �������

	�
ux��� t� � �� �����
�

ux�L� t� � �� �������

��
u��� t� � u�L� t�� �������

ux��� t� � ux�L� t�� �������

the procedure will be similar� In fact� ������� and ������� are una
ected� In the �rst case�
��������������� will be

X��� � �� �������

X ��L� � �� ��������

It is left as an exercise to show that


n �
�	
n� �

�



�

L

��
� n � �� �� � � � ��������

Xn � sin
	
n� �

�



�

L
x� n � �� �� � � � ��������

The boundary conditions �����	��������� lead to

X ���� � �� ������	�

X�L� � �� ��������

and the eigenpairs are


n �
�	
n� �

�



�

L

��
� n � �� �� � � � ������
�

Xn � cos
	
n� �

�



�

L
x� n � �� �� � � � ��������

The third case leads to
X ���� � �� ��������

��



X ��L� � �� ��������

Here the eigenpairs are

� � �� ��������

X� � �� ��������


n �
	
n�

L


�

� n � �� �� � � � ��������

Xn � cos
n�

L
x� n � �� �� � � � ��������

The case of periodic boundary conditions require detailed solution�

case �� 
 � ��
The solution is given by ��������

X�x� � Ae
p
�x �Be�

p
�x� � � �
 � ��

The boundary conditions ��������������� imply

A �B � Ae
p
�L �Be�

p
�L� ������	�

A
p
�� B

p
� � A

p
�e

p
�L �B

p
�e�

p
�L� ��������

This system can be written as

A
�
�� e

p
�L
�
�B

�
�� e�

p
�L
�
� �� ������
�

p
�A

�
�� e

p
�L
�
�
p
�B

�
�� � e�

p
�L
�
� �� ��������

This homogeneous system can have a solution only if the determinant of the coe�cient
matrix is zero� i�e� 




 �� e

p
�L �� e�

p
�L�

�� e
p
�L
�p

�
�
�� � e�

p
�L
�p

�






 � ��

Evaluating the determinant� we get

�
p
�
�
e
p
�L � e�

p
�L � �

�
� ��

which is not possible for � � ��

case �� 
 � ��
The solution is given by ��������� To use the boundary conditions� we have to di
erentiate

X�x��
X ��x� � A� ��������

The conditions ������� and ������� correspondingly imply

A � A�

��



B � AL�B� � AL � � � A � ��

Thus for the eigenvalue

� � �� ��������

the eigenfunction is
X��x� � �� ��������

case 	� 
 � ��
The solution is given by

X�x� � A cos
p

x �B sin

p

x� �����	��

The boundary conditions give the following equations for A�B�

A � A cos
p

L�B sin

p

L�

p

B � �

p

A sin

p

L �

p

B cos

p

L�

or
A
�
�� cos

p

L

�
� B sin

p

L � �� �����	��

A
p

 sin

p

L�B

p


�
�� cos

p

L

�
� �� �����	��

The determinant of the coe�cient matrix






�� cos

p

L � sin

p

Lp


 sin
p

L

p


�
�� cos

p

L

�






 � ��

or p


�
�� cos

p

L

��
�
p

 sin�

p

L � ��

Expanding and using some trigonometric identities�

�
p


�
�� cos

p

L

�
� ��

or
�� cos

p

L � �� �����		�

Thus �����	��������	�� become

�B sin
p

L � ��

A
p

 sin

p

L � ��

which imply
sin
p

L � �� �����	��

Thus the eigenvalues 
n must satisfy �����		� and �����	��� that is


n �
	
�n�

L


�

� n � �� �� � � � �����	
�

��



Condition �����	�� causes the system to be true for any A�B� therefore the eigenfunctions
are

Xn�x� �

���
��

cos �n�
L
x n � �� �� � � �

sin �n�
L
x n � �� �� � � �

�����	��

In summary� for periodic boundary conditions


� � �� �����	��

X��x� � �� �����	��


n �
	
�n�

L


�

� n � �� �� � � � �����	��

Xn�x� �

���
��

cos �n�
L
x n � �� �� � � �

sin �n�
L
x n � �� �� � � �

��������

Remark� The ODE for X is the same even when we separate the variables for the wave
equation� For Laplace�s equation� we treat either the x or the y as the marching variable
�depending on the boundary conditions given��

Example�
uxx � uyy � � � � x� y � � ��������

u�x� �� � u� � constant ��������

u�x� �� � � ������	�

u��� y� � u��� y� � �� ��������

This leads to
X �� � 
X � � ������
�

X��� � X��� � � ��������

and
Y �� � 
Y � � ��������

Y ��� � �� ��������

The eigenvalues and eigenfunctions are

Xn � sinn�x� n � �� �� � � � ��������


n � �n���� n � �� �� � � � �����
��

The solution for the y equation is then

Yn � sinhn��y � �� �����
��

��



and the solution of the problem is

u�x� y� �
�X
n��

�n sinn�x sinhn��y � �� �����
��

and the parameters �n can be obtained from the Fourier expansion of the nonzero boundary
condition� i�e�

�n �
�u�
n�

����n � �

sinhn�
� �����
	�

�	



Problems

�� Consider the di
erential equation

X ���x� � 
X�x� � �

Determine the eigenvalues 
 �assumed real� subject to

a� X��� � X��� � �

b� X ���� � X ��L� � �

c� X��� � X ��L� � �

d� X ���� � X�L� � �

e� X��� � � and X ��L� �X�L� � �

Analyze the cases 
 � �� 
 � � and 
 � ��

��



��� Eigenvalues and Eigenfunctions

As we have seen in the previous sections� the solution of the X�equation on a �nite interval
subject to homogeneous boundary conditions� results in a sequence of eigenvalues and corre�
sponding eigenfunctions� Eigenfunctions are said to describe natural vibrations and standing
waves� X� is the fundamental and Xi� i � � are the harmonics� The eigenvalues are the
natural frequencies of vibration� These frequencies do not depend on the initial conditions�
This means that the frequencies of the natural vibrations are independent of the method to
excite them� They characterize the properties of the vibrating system itself and are deter�
mined by the material constants of the system� geometrical factors and the conditions on
the boundary�

The eigenfunction Xn speci�es the pro�le of the standing wave� The points at which an
eigenfunction vanishes are called �nodal points �nodal lines in two dimensions�� The nodal
lines are the curves along which the membrane at rest during eigenvibration� For a square
membrane of side � the eigenfunction �as can be found in Chapter �� are sinnx sinmy and
the nodal lines are lines parallel to the coordinate axes� However� in the case of multiple
eigenvalues� many other nodal lines occur�

Some boundary conditions may not be exclusive enough to result in a unique solution
�up to a multiplicative constant� for each eigenvalue� In case of a double eigenvalue� any
pair of independent solutions can be used to express the most general eigenfunction for
this eigenvalue� Usually� it is best to choose the two solutions so they are orthogonal to
each other� This is necessary for the completeness property of the eigenfunctions� This can
be done by adding certain symmetry requirement over and above the boundary conditions�
which pick either one or the other� For example� in the case of periodic boundary conditions�
each positive eigenvalue has two eigenfunctions� one is even and the other is odd� Thus the
symmetry allows us to choose� If symmetry is not imposed then both functions must be
taken�

The eigenfunctions� as we proved in Chapter � of Neta� form a complete set which is the
basis for the method of eigenfunction expansion described in Chapter 
 for the solution of
inhomogeneous problems �inhomogeneity in the equation or the boundary conditions��

�




SUMMARY

X �� � 
X � �

Boundary conditions Eigenvalues 
n Eigenfunctions Xn

X��� � X�L� � �
�
n�
L

��
sin n�

L
x n � �� �� � � �

X��� � X ��L� � �
�
�n� �

�
��

L

��
sin

�n� �
�
��

L
x n � �� �� � � �

X ���� � X�L� � �
�
�n� �

�
��

L

��
cos

�n� �
�
��

L
x n � �� �� � � �

X ���� � X ��L� � �
�
n�
L

��
cos n�

L
x n � �� �� �� � � �

X��� � X�L�� X ���� � X ��L�
�
�n�
L

��
sin �n�

L
x n � �� �� � � �

cos �n�
L
x n � �� �� �� � � �

��



� Fourier Series

In this chapter we discuss Fourier series and the application to the solution of PDEs by
the method of separation of variables� In the last section� we return to the solution of
the problems in Chapter � and also show how to solve Laplace�s equation� We discuss the
eigenvalues and eigenfunctions of the Laplacian� The application of these eigenpairs to the
solution of the heat and wave equations in bounded domains will follow in Chapter � �for
higher dimensions and a variety of coordinate systems� and Chapter � �for nonhomogeneous
problems��

��� Introduction

As we have seen in the previous chapter� the method of separation of variables requires
the ability of presenting the initial condition in a Fourier series� Later we will �nd that
generalized Fourier series are necessary� In this chapter we will discuss the Fourier series
expansion of f�x�� i�e�

f�x� 	 a�
�

�
�X
n��

	
an cos

n�

L
x� bn sin

n�

L
x


� �	�����

We will discuss how the coe�cients are computed� the conditions for convergence of the
series� and the conditions under which the series can be di
erentiated or integrated term by
term�

De�nition ��� A function f�x� is piecewise continuous in �a� b� if there exists a �nite number
of points a � x� � x� � � � � � xn � b� such that f is continuous in each open interval
�xj� xj	�� and the one sided limits f�xj	� and f�xj	��� exist for all j � n� ��

Examples
�� f�x� � x� is continuous on �a� b��

��

f�x� �

�
x � � x � �
x� � x � � x � �

The function is piecewise continuous but not continuous because of the point x � ��

	� f�x� � �
x

� � � x � �� The function is not piecewise continuous because the one
sided limit at x � � does not exist�

De�nition ��� A function f�x� is piecewise smooth if f�x� and f ��x� are piecewise continuous�

De�nition �	� A function f�x� is periodic if f�x� is piecewise continuous and f�x�p� � f�x�
for some real positive number p and all x� The number p is called a period� The smallest
period is called the fundamental period�

Examples

�� f�x� � sinx is periodic of period ���

��



�� f�x� � cos x is periodic of period ���

Note� If fi�x�� i � �� �� � � � � n are all periodic of the same period p then the linear
combination of these functions

nX
i��

cifi�x�

is also periodic of period p�

��� Orthogonality

Recall that two vectors �a and �b in Rn are called orthogonal vectors if

�a ��b �
nX
i��

aibi � ��

We would like to extend this de�nition to functions� Let f�x� and g�x� be two functions
de�ned on the interval ��� ��� If we sample the two functions at the same points xi� i �

�� �� � � � � n then the vectors �F and �G� having components f�xi� and g�xi� correspondingly�
are orthogonal if

nX
i��

f�xi�g�xi� � ��

If we let n to increase to in�nity then we get an in�nite sum which is proportional to

Z �

�
f�x�g�x�dx�

Therefore� we de�ne orthogonality as follows�

De�nition ��� Two functions f�x� and g�x� are called orthogonal on the interval ��� �� with
respect to the weight function w�x� � � if

Z �

�
w�x�f�x�g�x�dx � ��

Example �
The functions sinx and cos x are orthogonal on ���� �� with respect to w�x� � ��

Z �

��
sinx cos xdx �

�

�

Z �

��
sin �xdx � ��

�
cos �xj��� � ��

�
�

�

�
� ��

De�nition �
� A set of functions f�n�x�g is called orthogonal system with respect to w�x�
on ��� �� if Z �

�
�n�x��m�x�w�x�dx � �� for m �� n� �	�����

��



De�nition ��� The norm of a function f�x� with respect to w�x� on the interval ��� �� is
de�ned by

kfk �
�Z �

�
w�x�f ��x�dx

����

�	�����

De�nition ��� The set f�n�x�g is called orthonormal system if it is an orthogonal system
and if

k�nk � �� �	���	�

Examples

��
�
sin

n�

L
x
�
is an orthogonal system with respect to w�x� � � on ��L� L��

For n �� m

Z L

�L
sin

n�

L
x sin

m�

L
xdx

�
Z L

�L

�
��

�
cos

�n�m��

L
x �

�

�
cos

�n�m��

L
x

�
dx

�

�
��

�

L

�n�m��
sin

�n �m��

L
x�

�

�

L

�n�m��
sin

�n�m��

L
x

� 



L�L� �

��
�
cos

n�

L
x
�
is also an orthogonal system on the same interval� It is easy to show that for

n �� m

Z L

�L
cos

n�

L
x cos

m�

L
xdx

�
Z L

�L

�
�

�
cos

�n �m��

L
x�

�

�
cos

�n�m��

L
x

�
dx

�

�
�

�

L

�n �m��
sin

�n�m��

L
x �

�

�

L

�n�m��
sin

�n�m��

L
x

�
jL�L � �

	� The set f�� cos x� sin x� cos �x� sin �x� � � � � cos nx� sinnx� � � �g is an orthogonal system on
���� �� with respect to the weight function w�x� � ��

We have shown already thatZ �

��
sinnx sinmxdx � � for n �� m �	�����

Z �

��
cosnx cosmxdx � � for n �� m� �	���
�

��



The only thing left to show is thereforeZ �

��
� � sinnxdx � � �	�����

Z �

��
� � cosnxdx � � �	�����

and Z �

��
sinnx cosmxdx � � for any n�m� �	�����

Note that Z �

��
sinnxdx � �cosnx

n
j��� � � �

n
�cosn� � cos��n��� � �

since
cosn� � cos��n�� � ����n� �	�����

In a similar fashion we demonstrate �	������ This time the antiderivative
�

n
sinnx vanishes

at both ends�
To show �	����� we consider �rst the case n � m� Thus

Z �

��
sinnx cos nxdx �

�

�

Z �

��
sin �nxdx � � �

�n
cos �nxj��� � �

For n �� m� we can use the trigonometric identity

sin ax cos bx �
�

�
�sin�a � b�x � sin�a� b�x� � �	������

Integrating each of these terms gives zero as in �	������ Therefore the system is orthogonal�

��� Computation of Coe�cients

Suppose that f�x� can be expanded in Fourier series

f�x� 	 a�
�

�
�X
k��

�
ak cos

k�

L
x � bk sin

k�

L
x

�
� �	�	���

The in�nite series may or may not converge� Even if the series converges� it may not give
the value of f�x� at some points� The question of convergence will be left for later� In this
section we just give the formulae used to compute the coe�cients ak� bk�

a� �
�

L

Z L

�L
f�x�dx� �	�	���

ak �
�

L

Z L

�L
f�x� cos

k�

L
xdx for k � �� �� � � � �	�	�	�

	�



bk �
�

L

Z L

�L
f�x� sin

k�

L
xdx for k � �� �� � � � �	�	���

Notice that for k � � �	�	�	� gives the same value as a� in �	�	���� This is the case only if

one takes
a�
�

as the �rst term in �	�	���� otherwise the constant term is

�

�L

Z L

�L
f�x�dx� �	�	�
�

The factor L in �	�	�	���	�	��� is exactly the square of the norm of the functions sin
k�

L
x and

cos
k�

L
x� In general� one should write the coe�cients as follows�

ak �

Z L

�L
f�x� cos

k�

L
xdxZ L

�L
cos�

k�

L
xdx

� for k � �� �� � � � �	�	���

bk �

Z L

�L
f�x� sin

k�

L
xdxZ L

�L
sin�

k�

L
xdx

� for k � �� �� � � � �	�	���

These two formulae will be very helpful when we discuss generalized Fourier series�

Example �
Find the Fourier series expansion of

f�x� � x on ��L� L�

ak �
�

L

Z L

�L
x cos

k�

L
xdx

�
�

L

�
L

k�
x sin

k�

L
x�

	
L

k�


�

cos
k�

L
x

� 



L�L
The �rst term vanishes at both ends and we have

�
�

L

	
L

k�


�

�cos k� � cos��k��� � ��

bk �
�

L

Z L

�L
x sin

k�

L
xdx

�
�

L

�
� L

k�
x cos

k�

L
x�

	
L

k�


�

sin
k�

L
x

� 



L�L�
Now the second term vanishes at both ends and thus

bk � � �

k�
�L cos k� � ��L� cos��k��� � ��L

k�
cos k� � ��L

k�
����k � �L

k�
����k	��
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Figure �� Graph of f�x� � x and the N th partial sums for N � �� 
� ��� ��

Therefore the Fourier series is

x 	
�X
k��

�L

k�
����k	� sin

k�

L
x� �	�	���

In �gure � we graphed the function f�x� � x and the N th partial sum for N � �� 
� ��� ���
Notice that the partial sums converge to f�x� except at the endpoints where we observe the
well known Gibbs phenomenon� �The discontinuity produces spurious oscillations in the
solution��

Example 	
Find the Fourier coe�cients of the expansion of

f�x� �

� �� for � L � x � �
� for � � x � L

�	�	���

ak �
�

L

Z �

�L
���� cos k�

L
xdx �

�

L

Z L

�
� � cos k�

L
xdx

� � �

L

L

k�
sin

k�

L
xj��L �

�

L

L

k�
sin

k�

L
xjL� � ��

a� �
�

L

Z �

�L
����dx�

�

L

Z L

�
�dx

� � �

L
xj��L �

�

L
xjL� �

�

L
��L� � �

L
� L � ��
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Figure �� Graph of f�x� given in Example 	 and the N th partial sums for N � �� 
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bk �
�

L

Z �

�L
���� sin k�

L
xdx �

�

L

Z L

�
� � sin k�

L
xdx

�
�

L
����

	
� L

k�



cos

k�

L
xj��L �

�

L

	
� L

k�



cos

k�

L
xjL�

�
�

k�
��� cos��k���� �

k�
�cos k� � ��

�
�

k�

h
�� ����k

i
�

Therefore the Fourier series is

f�x� 	
�X
k��

�

k�

h
�� ����k

i
sin

k�

L
x� �	�	����

The graphs of f�x� and the N th partial sums �for various values of N� are given in �gure ��

In the last two examples� we have seen that ak � �� Next� we give an example where all
the coe�cients are nonzero�

Example �

f�x� �

�
�
L
x � � �L � x � �

x � � x � L
�	�	����
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L
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�

L
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cos
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L
xdx �
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L

Z L
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L�

�
L
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x�

	
L

k�


�

cos
k�

L
x
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Figure ��� Graph of f�x� given by example � �L � �� and the N th partial sums for N �
�� 
� ��� ��� Notice that for L � � all cosine terms and odd sine terms vanish� thus the �rst
term is the constant �


bk �
�

L

Z �

�L

	
�

L
x � �



sin

k�

L
xdx�

�

L

Z L

�
x sin

k�

L
xdx

�
�

L�

�
� L

k�
x cos

k�

L
x�

	
L

k�


�

sin
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L
x
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��L
�
�

L

L

k�
�� cos

k�

L
x�j��L �

�

L

�
� L

k�
x cos

k�

L
x�

	
L

k�


�

sin
k�

L
x
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L
�

�
�

L�

L

k�
��L� cos k� � �

k�
�

�

k�
cos k� � L

k�
cos k�

� � �

k�

�
� � ����kL

�
�

therefore the Fourier series is

f�x� �
L � �

�
�

�X
k��

�
�� L

�k���

h
�� ����k

i
cos

k�

L
x� �

k�

h
� � ����kL

i
sin

k�

L
x

�

The sketches of f�x� and the N th partial sums are given in �gures ����� for various values
of L�
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Problems

�� For the following functions� sketch the Fourier series of f�x� on the interval ��L� L��
Compare f�x� to its Fourier series

a� f�x� � �

b� f�x� � x�

c� f�x� � ex

d�

f�x� �

�
�
�
x x � �

	x x � �

e�

f�x� �

���
��

� x � L
�

x� x � L
�

�� Sketch the Fourier series of f�x� on the interval ��L� L� and evaluate the Fourier coe��
cients for each

a� f�x� � x

b� f�x� � sin �
L
x

c�

f�x� �

���
��

� jxj � L
�

� jxj � L
�

	� Show that the Fourier series operation is linear� i�e� the Fourier series of �f�x� � �g�x�
is the sum of the Fourier series of f�x� and g�x� multiplied by the corresponding constant�

	�



��� Relationship to Least Squares

It can be shown that the Fourier series expansion of f�x� gives the best approximation of
f�x� in the sense of least squares� That is� if one minimizes the squares of di
erences between
f�x� and the nth partial sum of the series

a�
�

�
�X
k��

�
ak cos

k�

L
x� bk sin

k�

L
x

�

then the coe�cients a�� ak and bk are exactly the Fourier coe�cients given by �	�	�����	�	����

��� Convergence

If f�x� is piecewise smooth on ��L� L� then the series converges to either the periodic exten�
sion of f�x�� where the periodic extension is continuous� or to the average of the two limits�
where the periodic extension has a jump discontinuity�

��� Fourier Cosine and Sine Series

In the examples in the last section we have seen Fourier series for which all ak are zero� In
such a case the Fourier series includes only sine functions� Such a series is called a Fourier
sine series� The problems discussed in the previous chapter led to Fourier sine series or
Fourier cosine series depending on the boundary conditions�

Let us now recall the de�nition of odd and even functions� A function f�x� is called odd
if

f��x� � �f�x� �	�����

and even� if
f��x� � f�x�� �	�����

Since sin kx is an odd function� the sum is also an odd function� therefore a function f�x�
having a Fourier sine series expansion is odd� Similarly� an even function will have a Fourier
cosine series expansion�

Example 

f�x� � x� on ��L� L�� �	���	�

The function is odd and thus the Fourier series expansion will have only sine terms� i�e� all
ak � �� In fact we have found in one of the examples in the previous section that

f�x� 	
�X
k��

�L

k�
����k	� sin

k�

L
x �	�����

Example �
f�x� � x� on ��L� L�� �	���
�

	�



The function is even and thus all bk must be zero�

a� �
�

L

Z L

�L
x�dx �

�

L

Z L

�
x�dx �

�

L

x


	





L
�
�

�L�

	
� �	�����

ak �
�

L

Z L

�L
x� cos

k�

L
xdx �

Use table of integrals

�
�

L

�
��x	 L

k�


�

cos
k�

L
x




L�L�

�
��k�

L

��

x� � �

�
A	 L

k�





sin
k�

L
x




L�L

�
� �

The sine terms vanish at both ends and we have
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Notice that the coe�cients of the Fourier sine series can be written as

bk �
�

L

Z L

�
f�x� sin

k�

L
xdx� �	�����

that is the integration is only on half the interval and the result is doubled� Similarly for
the Fourier cosine series

ak �
�

L

Z L

�
f�x� cos

k�

L
xdx� �	�����

If we go back to the examples in the previous chapter� we notice that the partial di
er�
ential equation is solved on the interval ��� L�� If we end up with Fourier sine series� this
means that the initial solution f�x� was extended as an odd function to ��L� ��� It is the
odd extension that we expand in Fourier series�

Example �
Give a Fourier cosine series of

f�x� � x for � � x � L� �	������

This means that f�x� is extended as an even function� i�e�

f�x� �

� �x �L � x � �
x � � x � L

�	������

or
f�x� � jxj on ��L� L�� �	������

The Fourier cosine series will have the following coe�cients
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Figure �	� Graph of f�x� � x� and the N th partial sums for N � �� 
� ��� ��

ak �
�

L

Z L

�
x cos

k�

L
xdx �

�

L

�
L

k�
x sin

k�

L
x�

	
L

k�


�

cos
k�

L
x

� 



L
�

�
�

L

�
� �

	
L

k�


�

cos k� � ��
	
L

k�


�
�
�

�

L

	
L

k�


� h
����k � �

i
� �	������

Therefore the series is
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In the next four �gures we have sketched f�x� � jxj and the N th partial sums for various
values of N �

To sketch the Fourier cosine series of f�x�� we �rst sketch f�x� on ��� L�� then extend the
sketch to ��L� L� as an even function� then extend as a periodic function of period �L� At
points of discontinuity� take the average�

To sketch the Fourier sine series of f�x� we follow the same steps except that we take
the odd extension�

Example �

f�x� �

���
��

sin �
L
x� �L � x � �

x� � � x � L
�

L� x� L
�
� x � L

�	������
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Figure ��� Graph of f�x� � jxj and the N th partial sums for N � �� 
� ��� ��

The Fourier cosine series and the Fourier sine series will ignore the de�nition on the interval
��L� �� and take only the de�nition on ��� L�� The sketches follow on �gures �
����
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Figure �
� Sketch of f�x� given in Example �

Notes�
�� The Fourier series of a piecewise smooth function f�x� is continuous if and only if

f�x� is continuous and f��L� � f�L��
�� The Fourier cosine series of a piecewise smooth function f�x� is continuous if and only

if f�x� is continuous� �The condition f��L� � f�L� is automatically satis�ed��
	� The Fourier sine series of a piecewise smooth function f�x� is continuous if and only

if f�x� is continuous and f��� � f�L��
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Figure ��� Sketch of the Fourier sine series and the periodic odd extension
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Figure ��� Sketch of the Fourier cosine series and the periodic even extension

Example �
The previous example was for a function satisfying this condition� Suppose we have the

following f�x�

f�x� �

�
� �L � x � �
x � � x � L

�	������

The sketches of f�x�� its odd extension and its Fourier sine series are given in �gures �����
correspondingly�

−10 −8 −6 −4 −2 0 2 4 6 8 10
−4

−2

0

2

4

6

8

−L L

Figure ��� Sketch of f�x� given by example �
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Figure ��� Sketch of the odd extension of f�x�
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Figure ��� Sketch of the Fourier sine series is not continuous since f��� �� f�L�
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Problems

�� For each of the following functions
i� Sketch f�x�
ii� Sketch the Fourier series of f�x�
iii� Sketch the Fourier sine series of f�x�
iv� Sketch the Fourier cosine series of f�x�

a� f�x� �

�
x x � �

� � x x � �

b� f�x� � ex

c� f�x� � � � x�

d� f�x� �

�
�
�
x� � �� � x � �
x � � x � �

�� Sketch the Fourier sine series of

f�x� � cos
�

L
x�

Roughly sketch the sum of the �rst three terms of the Fourier sine series�

	� Sketch the Fourier cosine series and evaluate its coe�cients for

f�x� �

�������������
������������

� x �
L

�

	
L

�
� x �

L

�

�
L

�
� x

�� Fourier series can be de�ned on other intervals besides ��L� L�� Suppose g�y� is de�ned
on �a� b� and periodic with period b� a� Evaluate the coe�cients of the Fourier series�


� Expand

f�x� �

���
��

� � � x �
�

�
�

�

�
� x � �

in a series of sinnx�

a� Evaluate the coe�cients explicitly�

b� Graph the function to which the series converges to over ��� � x � ���

��



��	 Full solution of Several Problems

In this section we give the Fourier coe�cients for each of the solutions in the previous chapter�

Example ��

ut � kuxx� �	�����

u��� t� � �� �	�����

u�L� t� � �� �	���	�

u�x� �� � f�x�� �	�����

The solution given in the previous chapter is

u�x� t� �
�X
n��

bne
�k�n�

L
��t sin

n�

L
x� �	���
�

Upon substituting t � � in �	���
� and using �	����� we �nd that

f�x� �
�X
n��

bn sin
n�

L
x� �	�����

that is bn are the coe�cients of the expansion of f�x� into Fourier sine series� Therefore

bn �
�

L

Z L

�
f�x� sin

n�

L
xdx� �	�����

Example ��

ut � kuxx� �	�����

u��� t� � u�L� t�� �	�����

ux��� t� � ux�L� t�� �	������

u�x� �� � f�x�� �	������

The solution found in the previous chapter is

u�x� t� �
a�
�

�
�X
n��

�an cos
�n�

L
x � bn sin

�n�

L
x�e�k�

�n�
L

��t� �	������

As in the previous example� we take t � � in �	������ and compare with �	������ we �nd that

f�x� �
a�
�

�
�X
n��

�an cos
�n�

L
x� bn sin

�n�

L
x�� �	����	�

Therefore �notice that the period is L�

an �
�

L

Z L

�
f�x� cos

�n�

L
xdx� n � �� �� �� � � � �	������

�




bn �
�

L

Z L

�
f�x� sin

�n�

L
xdx� n � �� �� � � � �	����
�

�Note that
Z L

�
sin�

�n�

L
xdx �

L

�
�

Example ��
Solve Laplace�s equation inside a rectangle�

uxx � uyy � �� � � x � L� � � y � H� �	������

subject to the boundary conditions�

u��� y� � g��y�� �	������

u�L� y� � g��y�� �	������

u�x� �� � f��x�� �	������

u�x�H� � f��x�� �	������

Note that this is the �rst problem for which the boundary conditions are inhomogeneous�
We will show that u�x� y� can be computed by summing up the solutions of the following
four problems each having 	 homogeneous boundary conditions�
Problem ��

u�xx � u�yy � �� � � x � L� � � y � H� �	������

subject to the boundary conditions�

u���� y� � g��y�� �	������

u��L� y� � �� �	����	�

u��x� �� � �� �	������

u��x�H� � �� �	����
�

Problem ��

u�xx � u�yy � �� � � x � L� � � y � H� �	������

subject to the boundary conditions�

u���� y� � �� �	������

u��L� y� � g��y�� �	������

u��x� �� � �� �	������

u��x�H� � �� �	���	��

Problem 	�

��



u
xx � u
yy � �� � � x � L� � � y � H� �	���	��

subject to the boundary conditions�

u
��� y� � �� �	���	��

u
�L� y� � �� �	���		�

u
�x� �� � f��x�� �	���	��

u
�x�H� � �� �	���	
�

Problem ��

u�xx � u�yy � �� � � x � L� � � y � H� �	���	��

subject to the boundary conditions�

u���� y� � �� �	���	��

u��L� y� � �� �	���	��

u��x� �� � �� �	���	��

u��x�H� � f��x�� �	������

It is clear that since u�� u�� u
� and u� all satisfy Laplace�s equation� then

u � u� � u� � u
 � u�

also satis�es that same PDE �the equation is linear and the result follows from the principle
of superposition�� It is also as straightforward to show that u satis�es the inhomogeneous
boundary conditions �	��������	�������

We will solve only problem 	 and leave the other 	 problems as exercises�
Separation of variables method applied to �	���	����	���	
� leads to the following two

ODEs
X �� � 
X � �� �	������

X��� � �� �	������

X�L� � �� �	����	�

Y �� � 
Y � �� �	������

Y �H� � �� �	����
�

The solution of the �rst was obtained earlier� see �����������������

Xn � sin
n�

L
x� �	������


n �
	
n�

L


�

� n � �� �� � � � �	������

��



Using these eigenvalues in �	������ we have

Y ��
n �

	
n�

L


�

Yn � � �	������

which has a solution
Yn � An cosh

n�

L
y �Bn sinh

n�

L
y� �	������

Because of the boundary condition and the fact that sinh y vanishes at zero� we prefer to
write the solution as a shifted hyperbolic sine �see ������
��� i�e�

Yn � An sinh
n�

L
�y �H�� �	���
��

Clearly� this vanishes at y � H and thus �	����
� is also satis�ed� Therefore� we have

u
�x� y� �
�X
n��

An sinh
n�

L
�y �H� sin

n�

L
x� �	���
��

In the exercises� the reader will have to show that

u��x� y� �
�X
n��

Bn sinh
n�

H
�x� L� sin

n�

H
y� �	���
��

u��x� y� �
�X
n��

Cn sinh
n�

H
x sin

n�

H
y� �	���
	�

u��x� y� �
�X
n��

Dn sinh
n�

L
y sin

n�

L
x� �	���
��

To get An� Bn� Cn� and Dn we will use the inhomogeneous boundary condition in each
problem�

An sinh
n�

L
��H� �

�

L

Z L

�
f��x� sin

n�

L
xdx� �	���

�

Bn sinh
n�

H
��L� � �

H

Z H

�
g��y� sin

n�

H
ydy� �	���
��

Cn sinh
n�L

H
�

�

H

Z H

�
g��y� sin

n�

H
ydy� �	���
��

Dn sinh
n�H

L
�

�

L

Z L

�
f��x� sin

n�

L
xdx� �	���
��

Example �	
Solve Laplace�s equation inside a circle of radius a�

r�u �
�

r

�

�r

�
r
�u

�r

�
�

�

r�
��u

���
� �� �	���
��

��



subject to
u�a� �� � f���� �	������

Let
u�r� �� � R�r�!���� �	������

then

!
�

r
�rR��� �

�

r�
R!�� � ��

Multiply by
r�

R!
r �rR���

R
� �!��

!
� �� �	������

Thus the ODEs are
!�� � �! � �� �	����	�

and
r�rR��� � �R � �� �	������

The solution must be periodic in � since we have a complete disk� Thus the boundary
conditions for ! are

!��� � !����� �	����
�

!���� � !������ �	������

The solution of the ! equation is given by

�� � �� !� � �� �	������

�n � n�� !n �

�
sinn�
cos n� n � �� �� � � �

�	������

The only boundary condition for R is the boundedness� i�e�

jR���j ��� �	������

The solution for the R equation is given by �see Euler�s equation in any ODE book�

R� � C� ln r �D�� �	������

Rn � Cnr
�n �Dnr

n� �	������

Since ln r and r�n are not �nite at r � � �which is in the domain�� we must have C� � Cn � ��
Therefore

u�r� �� �
�

�
�� �

�X
n��

rn��n cos n� � �n sinn��� �	������

Using the inhomogeneous boundary condition

f��� � u�a� �� �
�

�
�� �

�X
n��

an��n cosn� � �n sinn��� �	����	�

��



we have the coe�cients �Fourier series expansion of f����

�� �
�

�

Z ��

�
f���d�� �	������

�n �
�

�an

Z ��

�
f��� cosn�d�� �	����
�

�n �
�

�an

Z ��

�
f��� sinn�d�� �	������

The boundedness condition at zero is necessary only if r � � is part of the domain�

In the next example� we show how to overcome the Gibbs phenomenon resulting from
discontinuities in the boundary conditions�

Example ��
Solve Laplace�s equation inside a recatngular domain ��� a�
��� b� with nonzero Dirichlet

boundary conditions on each side� i�e�

r�u � � �	������

u�x� �� � g��x�� �	������

u�a� y� � g��y�� �	������

u�x� b� � g
�x�� �	������

u��� y� � g��y�� �	������

assuming that g��a� �� g���� and so forth at other corners of the rectangle� This discontinuity
causes spurios oscillations in the soultion� i�e� we have Gibbs phenomenon�

The way to overcome the problem is to decompose u to a sum of two functions

u � v � w �	������

where w is bilinear function and thus satis�es r�w � �� and v is harmonic with boundary
conditions vanishing at the corners� i�e�

r�v � � �	����	�

v � g � w� on the boundary� �	������

In order to get zero boundary conditions on the corners� we must have the function w be
of the form

w�x� y� � g��� ��
�a� x��b� y�

ab
� g�a� ��

x�b� y�

ab
� g�a� b�

xy

ab
� g��� b�

�a� x�y

ab
� �	����
�

and
g�x� �� � g��x� �	������

g�a� y� � g��y� �	������

g�x� b� � g
�x� �	������

g��� y� � g��y�� �	������

It is easy to show that this w satis�es Laplace�s equation and that v vanishes at the
corners and therefore the discontinuities disappear�


�



Problems

�� Solve the heat equation

ut � kuxx� � � x � L� t � ��

subject to the boundary conditions

u��� t� � u�L� t� � ��

Solve the problem subject to the initial value�

a� u�x� �� � � sin ��
L
x�

b� u�x� �� � � cos 
�
L
x�

�� Solve the heat equation

ut � kuxx� � � x � L� t � ��

subject to
ux��� t� � �� t � �

ux�L� t� � �� t � �

a� u�x� �� �

���
��

� x � L
�

� x � L
�

b� u�x� �� � � � � cos 
�
L
x�

	� Solve the eigenvalue problem
��� � �
�

subject to
���� � �����

����� � ������

�� Solve Laplace�s equation inside a wedge of radius a and angle ��

r�u �
�

r

�

�r

�
r
�u

�r

�
�

�

r�
��u

���
� �

subject to
u�a� �� � f����

u�r� �� � u��r� �� � ��


�




� Solve Laplace�s equation inside a rectangle � � x � L� � � y � H subject to

a� ux��� y� � ux�L� y� � u�x� �� � �� u�x�H� � f�x��

b� u��� y� � g�y�� u�L� y� � uy�x� �� � u�x�H� � ��

c� u��� y� � u�L� y� � �� u�x� ��� uy�x� �� � �� u�x�H� � f�x��

�� Solve Laplace�s equation outside a circular disk of radius a� subject to

a� u�a� �� � ln � � � cos 	��

b� u�a� �� � f����

�� Solve Laplace�s equation inside the quarter circle of radius �� subject to

a� u��r� �� � u�r� ���� � �� u��� �� � f����

b� u��r� �� � u��r� ���� � �� ur��� �� � g����

c� u�r� �� � u�r� ���� � �� ur��� �� � ��

�� Solve Laplace�s equation inside a circular annulus �a � r � b�� subject to

a� u�a� �� � f���� u�b� �� � g����

b� ur�a� �� � f���� ur�b� �� � g����

�� Solve Laplace�s equation inside a semi�in�nite strip �� � x � �� � � y � H� subject
to

uy�x� �� � �� uy�x�H� � �� u��� y� � f�y��

��� Consider the heat equation

ut � uxx � q�x� t�� � � x � L�

subject to the boundary conditions

u��� t� � u�L� t� � ��

Assume that q�x� t� is a piecewise smooth function of x for each positive t� Also assume that
u and ux are continuous functions of x and uxx and ut are piecewise smooth� Thus

u�x� t� �
�X
n��

bn�t� sin
n�

L
x�

Write the ordinary di
erential equation satis�ed by bn�t��

��� Solve the following inhomogeneous problem

�u

�t
� k

��u

�x�
� e�t � e��t cos

	�

L
x�


�



subject to
�u

�x
��� t� �

�u

�x
�L� t� � ��

u�x� �� � f�x��

Hint � Look for a solution as a Fourier cosine series� Assume k �� �L�

���
�

��� Solve the wave equation by the method of separation of variables

utt � c�uxx � �� � � x � L�

u��� t� � ��

u�L� t� � ��

u�x� �� � f�x��

ut�x� �� � g�x��

�	� Solve the heat equation

ut � �uxx� � � x � L�

subject to the boundary conditions

u��� t� � ux�L� t� � ��

and the initial condition

u�x� �� � sin
	

�

�

L
x�

��� Solve the heat equation

�u

�t
� k

�
�

r

�

�r

�
r
�u

�r

�
�

�

r�
��u

���

�

inside a disk of radius a subject to the boundary condition

�u

�r
�a� �� t� � ��

and the initial condition
u�r� �� �� � f�r� ��

where f�r� �� is a given function�

�
� Determine which of the following equations are separable�


	



�a� uxx � uyy � � �b� uxy � uyy � u

�c� x�yuxx � y�uyy � �u �d� ut � uux � �

�e� utt � f�t�ut � uxx �f�
x�

y�
uxxx � uy

��� �a� Solve the one dimensional heat equation in a bar

ut � kuxx � � x � L

which is insulated at either end� given the initial temperature distribution

u�x� �� � f�x�

�b� What is the equilibrium temperature of the bar� and explain physically why your
answer makes sense�

��� Solve the ��D heat equation

ut � kuxx � � x � L

subject to the nonhomogeneous boundary conditions

u��� � � ux�L� � �

with an initial temperature distribution u�x� �� � �� �Hint� First solve for the equilibrium
temperature distribution v�x� which satis�es the steady state heat equation with the pre�
scribed boundary conditions� Once v is found� write u�x� t� � v�x� � w�x� t� where w�x� t�
is the transient response� Substitue this u back into the PDE to produce a new PDE for w
which now has homogeneous boundary conditions�

��� Solve Laplace�s equation�

r�u � �� � � x � �� � � y � �

subject to the boundary conditions

u�x� �� � sinx � � sin �x

u��� y� � �

u�x� �� � �

u��� y� � �

��� Repeat the above problem with

u�x� �� � ���x� � ��x
 � x�


�



SUMMARY
Fourier Series

f�x� 	 a�
�

�
�X
n��

	
an cos

n�

L
x � bn sin

n�

L
x



ak �
�

L

Z L

�L
f�x� cos

k�

L
xdx for k � �� �� �� � � �

bk �
�

L

Z L

�L
f�x� sin

k�

L
xdx for k � �� �� � � �

Solution of Euler�s equation
r�rR��� � 
R � �

For 
� � � the solution is R� � C� ln r � C�

For 
n � n� the solution is Rn � D�r
n �D�r

�n� n � �� �� � � �







� PDEs in Higher Dimensions

��� Introduction

In the previous chapters we discussed homogeneous time dependent one dimensional PDEs
with homogeneous boundary conditions� Also Laplace�s equation in two variables was solved
in cartesian and polar coordinate systems� The eigenpairs of the Laplacian will be used here
to solve time dependent PDEs with two or three spatial variables� We will also discuss the
solution of Laplace�s equation in cylindrical and spherical coordinate systems� thus allowing
us to solve the heat and wave equations in those coordinate systems�

In the top part of the following table we list the various equations solved to this point�
In the bottom part we list the equations to be solved in this chapter�

Equation Type Comments
ut � kuxx heat �D constant coe�cients
c�x�
�x�ut � �K�x�ux�x heat �D
utt � c�uxx � � wave �D constant coe�cients

�x�utt � T��x�uxx � � wave �D
uxx � uyy � � Laplace �D constant coe�cients

ut � k�uxx � uyy� heat �D constant coe�cients
ut � k�uxx � uyy � uzz� heat 	D constant coe�cients
utt � c��uxx � uyy� � � wave �D constant coe�cients
utt � c��uxx � uyy � uzz� � � wave 	D constant coe�cients
uxx � uyy � uzz � � Laplace 	D Cartesian

�
r
�rur�r �

�
r�
u�� � uzz � � Laplace 	D Cylindrical

urr �
�
r
ur �

�
r�
u�� �

cot �
r�

u� �
�

r� sin� �
u		 � � Laplace 	D Spherical


�



��� Heat Flow in a Rectangular Domain

In this section we solve the heat equation in two spatial variables inside a rectangle L by H�
The equation is

ut � k�uxx � uyy�� � � x � L� � � y � H� �������

u��� y� t� � �� �������

u�L� y� t� � �� �����	�

u�x� �� t� � �� �������

u�x�H� t� � �� �����
�

u�x� y� �� � f�x� y�� �������

Notice that the term in parentheses in ������� isr�u� Note also that we took Dirichlet bound�
ary conditions �i�e� speci�ed temperature on the boundary�� We can write this condition
as

u�x� y� t� � �� on the boundary �������

Other possible boundary conditions are left to the reader�
The method of separation of variables will proceed as follows �
�� Let

u�x� y� t� � T �t���x� y� �������

�� Substitute in ������� and separate the variables

�T� � kTr��

�T

kT
�
r��

�
� �


	� Write the ODEs
�T �t� � k
T �t� � � �������

r��� 
� � � ��������

�� Use the homogeneous boundary condition ������� to get the boundary condition associ�
ated with ��������

��x� y� � �� on the boundary ��������

The only question left is how to get the solution of �������� � ��������� This can be done in
a similar fashion to solving Laplace�s equation�
Let

��x� y� � X�x�Y �y�� ��������

then �������� � �������� yield � ODEs

X �� � �X � �� ������	�

X��� � X�L� � �� ��������


�



Y �� � �
� ��Y � �� ������
�

Y ��� � Y �H� � �� ��������

The boundary conditions �������� and �������� result from ������� � �����
�� Equation ������	�
has a solution

Xn � sin
n�

L
x� n � �� �� � � � ��������

�n �
	
n�

L


�

� n � �� �� � � � ��������

as we have seen in Chapter �� For each n� equation ������
� is solved the same way

Ymn � sin
m�

H
y� m � �� �� � � � � n � �� �� � � � ��������


mn � �n �
	
m�

H


�

� m � �� �� � � � � n � �� �� � � � ��������

Therefore by �������� and ������������������

�mn�x� y� � sin
n�

L
x sin

m�

H
y� ��������


mn �
	
n�

L


�

�
	
m�

H


�

� ��������

n � �� �� � � � � m � �� �� � � �

Using ������� and the principle of superposition� we can write the solution of ������� as

u�x� y� t� �
�X
n��

�X
m��

Amne
�k
mnt sin

n�

L
x sin

m�

H
y� ������	�

where 
mn is given by ���������
To �nd the coe�cients Amn� we use the initial condition �������� that is for t � � in ������	�
we get �

f�x� y� �
�X
n��

�X
m��

Amn sin
n�

L
x sin

m�

H
y� ��������

Amn are the generalized Fourier coe�cients �double Fourier series in this case�� We can
compute Amn by

Amn �

R L
�

RH
� f�x� y� sin n�

L
x sin m�

H
ydydxR L

�

RH
� sin� n�

L
x sin� m�

H
ydydx

� ������
�

�See next section��
Remarks �
i� Equation �������� is called Helmholtz equation�
ii� A more general form of the equation is

r � �p�x� y�r��x� y�� � q�x� y���x� y� � 
��x� y���x� y� � � ��������

iii� A more general boundary condition is

���x� y���x� y� � ���x� y�r� � �n � � on the boundary ��������

where �n is a unit normal vector pointing outward� The special case �� � � yields ���������


�



Problems

�� Solve the heat equation

ut�x� y� t� � k �uxx�x� y� t� � uyy�x� y� t�� �

on the rectangle � � x � L� � � y � H subject to the initial condition

u�x� y� �� � f�x� y��

and the boundary conditions

a�
u��� y� t� � ux�L� y� t� � ��

u�x� �� t� � u�x�H� t� � ��

b�
ux��� y� t� � u�L� y� t� � ��

uy�x� �� t� � uy�x�H� t� � ��

c�
u��� y� t� � u�L� y� t� � ��

u�x� �� t� � uy�x�H� t� � ��

�� Solve the heat equation on a rectangular box

� � x � L� � � y � H� � � z � W�

ut�x� y� z� t� � k�uxx � uyy � uzz��

subject to the boundary conditions

u��� y� z� t� � u�L� y� z� t� � ��

u�x� �� z� t� � u�x�H� z� t� � ��

u�x� y� �� t� � u�x� y�W� t� � ��

and the initial condition
u�x� y� z� �� � f�x� y� z��


�



��� Vibrations of a rectangular Membrane

The method of separation of variables in this case will lead to the same Helmholtz equation�
The only di
erence is in the T equation� the problem to solve is as follows �

utt � c��uxx � uyy�� � � x � L� � � y � H� ���	���

u��� y� t� � �� ���	���

u�L� y� t� � �� ���	�	�

u�x� �� t� � �� ���	���

uy�x�H� t� � �� ���	�
�

u�x� y� �� � f�x� y�� ���	���

ut�x� y� �� � g�x� y�� ���	���

Clearly there are two initial conditions� ���	�������	���� since the PDE is second order in time�
We have decided to use a Neumann boundary condition at the top y � H� to show how the
solution of Helmholtz equation is a
ected�
The steps to follow are � �the reader is advised to compare these equations to ��������������
��

u�x� y� t� � T �t���x� y�� ���	���

"T

c�T
�
r��

�
� �


"T � 
c�T � �� ���	���

r��� 
� � �� ���	����

����x� y� � ���y�x� y� � �� ���	����

where either �� or �� is zero depending on which side of the rectangle we are on�

��x� y� � X�x�Y �y�� ���	����

X �� � �X � �� ���	��	�

X��� � X�L� � �� ���	����

Y �� � �
� ��Y � �� ���	��
�

Y ��� � Y ��H� � �� ���	����

Xn � sin
n�

L
x� n � �� �� � � � ���	����

�n �
	
n�

L


�

� n � �� �� � � � ���	����

Ymn � sin
�m� �

�
��

H
y� m � �� �� � � � n � �� �� � � � ���	����

��




mn �

�
�m� �

�
��

H

��

�
	
n�

L


�

� m � �� �� � � � n � �� �� � � � ���	����

Note the similarity of ���	�������	���� to the corresponding equations of section ����
The solution

u�x� y� t� �
�X

m��

�X
n��

	
Amn cos

q

mnct�Bmn sin

q

mnct



sin

n�

L
x sin

�m� �
�
��

H
y� ���	����

Since the T equation is of second order� we end up with two sets of parameters Amn and
Bmn� These can be found by using the two initial conditions ���	�������	����

f�x� y� �
�X
n��

�X
m��

Amn sin
n�

L
x sin

�m� �
�
��

H
y� ���	����

g�x� y� �
�X
n��

�X
m��

c
q

mnBmn sin

n�

L
x sin

�m� �
�
��

H
y� ���	��	�

To get ���	��	� we need to evaluate ut from ���	���� and then substitute t � �� The coe��
cients are then

Amn �

R L
�

RH
� f�x� y� sin n�

L
x sin

�m� �
�
��

H
ydydxR L

�

RH
� sin� n�

L
x sin�

�m� �
�
��

H
ydydx

� ���	����

c
q

mnBmn �

R L
�

RH
� g�x� y� sin n�

L
x sin

�m� �
�
��

H
ydydxR L

�

RH
� sin� n�

L
x sin�

�m� �
�
��

H
ydydx

� ���	��
�

��



Problems

�� Solve the wave equation

utt�x� y� t� � c� �uxx�x� y� t� � uyy�x� y� t�� �

on the rectangle � � x � L� � � y � H subject to the initial conditions

u�x� y� �� � f�x� y��

ut�x� y� �� � g�x� y��

and the boundary conditions

a�
u��� y� t� � ux�L� y� t� � ��

u�x� �� t� � u�x�H� t� � ��

b�
u��� y� t� � u�L� y� t� � ��

u�x� �� t� � u�x�H� t� � ��

c�
ux��� y� t� � u�L� y� t� � ��

uy�x� �� t� � uy�x�H� t� � ��

�� Solve the wave equation on a rectangular box

� � x � L� � � y � H� � � z � W�

utt�x� y� z� t� � c��uxx � uyy � uzz��

subject to the boundary conditions

u��� y� z� t� � u�L� y� z� t� � ��

u�x� �� z� t� � u�x�H� z� t� � ��

u�x� y� �� t� � u�x� y�W� t� � ��

and the initial conditions
u�x� y� z� �� � f�x� y� z��

ut�x� y� z� �� � g�x� y� z��

	� Solve the wave equation on an isosceles right�angle triangle with side of length a

utt�x� y� t� � c��uxx � uyy��

��



subject to the boundary conditions

u�x� �� t� � u��� y� t� � ��

u�x� y� t� � �� on the line x � y � a

and the initial conditions
u�x� y� �� � f�x� y��

ut�x� y� �� � g�x� y��

�	



��� Helmholtz Equation

As we have seen in this chapter� the method of separation of variables in two independent
variables leads to Helmholtz equation�

r��� 
� � �

subject to the boundary conditions

����x� y� � ���x�x� y� � �
�y�x� y� � ��

Here we state a result generalizing Sturm�Liouville�s from Chapter � of Neta�
Theorem�

�� All the eigenvalues are real�
�� There exists an in�nite number of eigenvalues� There is a smallest one but no largest�
	� Corresponding to each eigenvalue� there may be many eigenfunctions�
�� The eigenfunctions �i�x� y� form a complete set� i�e� any function f�x� y� can be

represented by

X
i

ai�i�x� y� �������

where the coe�cients ai are given by�

ai �

R R
�if�x� y�dxdyR R

��
idxdy

�������


� Eigenfunctions belonging to di
erent eigenvalues are orthogonal�
�� An eigenvalue 
 can be related to the eigenfunction ��x� y� by Rayleigh quotient�


 �

R R
�r���dxdy � H

�r� � �ndsR R
��dxdy

�����	�

where
H

symbolizes integration on the boundary� For example� the following Helmholtz
problem �see ����������

r��� 
� � �� � � x � L� � � y � H� �������

� � �� on the boundary� �����
�

was solved and we found


mn �
	
n�

L


�

�
	
m�

H


�

� n � �� �� � � � � m � �� �� � � � �������

�mn�x� y� � sin
n�

L
x sin

m�

H
y� n � �� �� � � � � m � �� �� � � � �������

Clearly all the eigenvalues are real� The smallest one is 
�� �
�
�
L

��
�
�
�
H

��
� 
mn � �

as n and m � �� There may be multiple eigenfunctions in some cases� For example� if

��



L � �H then 
�� � 
�� but the eigenfunctions ��� and ��� are di
erent� The coe�cients of
expansion are

amn �

R L
�

RH
� f�x� y��mndxdyR L
�

RH
� ��

mndxdy
�������

as given by ������
��

�




Problems

�� Solve
r��� 
� � � ��� ��
 ��� ����

subject to
���� y� � �

�x��� y� � �

��x� �� � �

�y�x� ���� � ��

Show that the results of the theorem are true�

�� Solve Helmholtz equation on an isosceles right�angle triangle with side of length a

uxx � uyy � 
u � ��

subject to the boundary conditions

u�x� �� t� � u��� y� t� � ��

u�x� y� t� � �� on the line x� y � a�

��



��� Vibrating Circular Membrane

In this section� we discuss the solution of the wave equation inside a circle� As we have
seen in sections ��� and ��	� there is a similarity between the solution of the heat and wave
equations� Thus we will leave the solution of the heat equation to the exercises�

The problem is�

utt�r� �� t� � c�r�u� � � r � a� � � � � ��� t � � ���
���

subject to the boundary condition

u�a� �� t� � �� �clamped membrane� ���
���

and the initial conditions
u�r� �� �� � ��r� ��� ���
�	�

ut�r� �� �� � ��r� ��� ���
���

The method of separation of variables leads to the same set of di
erential equations

"T �t� � 
c�T � �� ���
�
�

r��� 
� � �� ���
���

��a� �� � �� ���
���

Note that in polar coordinates

r�� �
�

r

�

�r

�
r
��

�r

�
�

�

r�
���

���
���
���

Separating the variables in the Helmholtz equation ���
��� we have

��r� �� � R�r�!���� ���
���

!�� � �! � � ���
����

d

dr

�
r
dR

dr

�
�
	

r � �

r



R � �� ���
����

The boundary equation ���
��� yields

R�a� � �� ���
����

What are the other boundary conditions� Check the solution of Laplace�s equation inside a
circle#

!��� � !����� �periodicity� ���
��	�

!���� � !������ ���
����

��



jR���j �� �boundedness� ���
��
�

The equation for !��� can be solved �see Chapter ��

�m � m� m � �� �� �� � � � ���
����

!m �

�
sinm�
cosm� m � �� �� �� � � �

���
����

In the rest of this section� we discuss the solution of ���
���� subject to ���
����� ���
��
��
After substituting the eigenvalues �m from ���
����� we have

d

dr

�
r
dRm

dr

�
�

�

r � m�

r

�
Rm � � ���
����

jRm���j �� ���
����

Rm�a� � �� ���
����

Using Rayleight quotient for this singular Sturm�Liouville problem� we can show that 
 � ��
thus we can make the transformation


 �
p

r ���
����

which will yield Bessel�s equation


�
d�R�
�

d
�
� 


dR�
�

d

�
�

� �m�

�
R�
� � � ���
����

Consulting a textbook on the solution of Ordinary Di
erential Equations� we �nd�

Rm�
� � C�mJm�
� � C�mYm�
� ���
��	�

where Jm� Ym are Bessel functions of the �rst� second kind of order m respectively� Since we
are interested in a solution satisftying ���
��
�� we should note that near 
 � �

Jm�
� 	
�

� m � �
�

�mm


m m � �

���
����

Ym�
� 	
�

�
�
ln 
 m � �

��m�m���

�

�
�m

m � ��
���
��
�

Thus C�m � � is necessary to achieve boundedness� Thus

Rm�r� � C�mJm�
p

r�� ���
����

In �gure �� we have plotted the Bessel functions J� through J�� Note that all Jn start at
� except J� and all the functions cross the axis in�nitely many times� In �gure �� we have
plotted the Bessel functions �also called Neumann functions� Y� through Y�� Note that the
vertical axis is through x � 	 and so it is not so clear that Yn tend to �� as x� ��

��
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Figure ��� Bessel functions Jn� n � �� � � � � 


To satisfy the boundary condition ���
���� we get an equation for the eigenvalues 


Jm�
p

a� � �� ���
����

There are in�nitely many solutions of ���
���� for any m� We denote these solutions by

�mn �
q

mna m � �� �� �� � � � n � �� �� � � � ���
����

Thus


mn �

�
�mn

a

��

� ���
����

Rmn�r� � Jm

�
�mn

a
r

�
� ���
�	��

We leave it as an exercise to show that the general solution to ���
��� � ���
��� is given by

u�r� �� t� �
�X

m��

�X
n��

Jm

�
�mn

a
r

�
famn cosm� � bmn sinm�g

�
Amn cos c

�mn

a
t�Bmn sin c

�mn

a
t

�
���
�	��

We will �nd the coe�cients by using the initial conditions ���
�	�����
���

��r� �� �
�X

m��

�X
n��

Jm

�
�mn

a
r

�
Amn famn cosm� � bmn sinm�g ���
�	��

��
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��r� �� �
�X

m��

�X
n��

Jm

�
�mn

a
r

�
c
�mn

a
Bmn famn cosm� � bmn sinm�g � ���
�		�

Amnamn �

R ��
�

R a
� ��r� ��Jm

�
�mn

a
r
�
cosm�rdrd�R ��

�

R a
� J

�
m

�
�mn

a
r
�
cos�m�rdrd�

� ���
�	��

c
�mn

a
Bmnamn �

R ��
�

R a
� ��r� ��Jm

�
�mn

a
r
�
cosm�rdrd�R ��

�

R a
� J

�
m

�
�mn

a
r
�
cos�m�rdrd�

� ���
�	
�

Replacing cosm� by sinm� we get Amnbmn and c �mn

a
Bmnbmn�

Remarks
�� Note the weight r in the integration� It comes from having 
 multiplied by r in

���
�����
�� We are computing the four required combinations Amnamn� Amnbmn� Bmnamn� and

Bmnbmn� We do not need to �nd Amn or Bmn and so on�

Example�
Solve the circularly symmetric case

utt�r� t� �
c�

r

�

�r

�
r
�u

�r

�
� ���
�	��

u�a� t� � �� ���
�	��

��



u�r� �� � ��r�� ���
�	��

ut�r� �� � ��r�� ���
�	��

The reader can easily show that the separation of variables give

"T � 
c�T � �� ���
����

d

dr

�
r
dR

dr

�
� 
rR � �� ���
����

R�a� � �� ���
����

jR���j ��� ���
��	�

Since there is no dependence on � � the r equation will have no �� or which is the same
m � �� Thus

R��r� � J��
q

nr� ���
����

where the eigenvalues 
n are computed from

J��
q

na� � �� ���
��
�

The general solution is

u�r� t� �
�X
n��

anJ��
q

nr� cos c

q

nt� bnJ��

q

nr� sin c

q

nt� ���
����

The coe�cients an� bn are given by

an �

R a
� J��

p

nr���r�rdrR a

� J
�
� �
p

nr�rdr

� ���
����

bn �

R a
� J��

p

nr���r�rdr

c
p

n
R a
� J

�
� �
p

nr�rdr

� ���
����

��



Problems

�� Solve the heat equation

ut�r� �� t� � kr�u� � � r � a� � � � � ��� t � �

subject to the boundary condition

u�a� �� t� � � �zero temperature on the boundary�

and the initial condition
u�r� �� �� � ��r� ���

�� Solve the wave equation

utt�r� t� � c��urr �
�

r
ur��

ur�a� t� � ��

u�r� �� � ��r��

ut�r� �� � ��

Show the details�

	� Consult numerical analysis textbook to obtain the smallest eigenvalue of the above
problem�

�� Solve the wave equation

utt�r� �� t�� c�r�u � �� � � r � a� � � � � ��� t � �

subject to the boundary condition
ur�a� �� t� � �

and the initial conditions
u�r� �� �� � ��

ut�r� �� �� � ��r� cos 
��


� Solve the wave equation

utt�r� �� t�� c�r�u � �� � � r � a� � � � � ���� t � �

subject to the boundary conditions

u�a� �� t� � u�r� �� t� � u�r� ���� t� � � �zero displacement on the boundary�

and the initial conditions
u�r� �� �� � ��r� ���

ut�r� �� �� � ��

��



��� Laplace�s Equation in a Circular Cylinder

Laplace�s equation in cylindrical coordinates is given by�

�

r
�rur�r �

�

r�
u�� � uzz � �� � � r � a� � � z � H� � � � � ��� �������

The boundary conditions we discuss here are�

u�r� �� �� � ��r� ��� on bottom of cylinder� �������

u�r� ��H� � ��r� ��� on top of cylinder� �����	�

u�a� �� z� � ���� z�� on lateral surface of cylinder� �������

Similar methods can be employed if the boundary conditions are not of Dirichlet type �see
exercises��

As we have done previously with Laplace�s equation� we use the principle of superposition
to get two homogenous boundary conditions� Thus we have the following three problems to
solve� each di
er from the others in the boundary conditions�
Problem ��

�

r
�rur�r �

�

r�
u�� � uzz � �� �����
�

u�r� �� �� � �� �������

u�r� ��H� � ��r� ��� �������

u�a� �� z� � �� �������

Problem ��
�

r
�rur�r �

�

r�
u�� � uzz � �� �������

u�r� �� �� � ��r� ��� ��������

u�r� ��H� � �� ��������

u�a� �� z� � �� ��������

Problem 	�
�

r
�rur�r �

�

r�
u�� � uzz � �� ������	�

u�r� �� �� � �� ��������

u�r� ��H� � �� ������
�

u�a� �� z� � ���� z�� ��������

Since the PDE is the same in all three problems� we get the same set of ODEs

!�� � �! � �� ��������

�	



Z �� � 
Z � �� ��������

r�rR��� � �
r� � ��R � �� ��������

Recalling Laplace�s equation in polar coordinates� the boundary conditions associated with
�������� are

!��� � !����� ��������

!���� � !������ ��������

and one of the boundary conditions for �������� is

jR���j ��� ��������

The other boundary conditions depend on which of the three we are solving� For problem
�� we have

Z��� � �� ������	�

R�a� � �� ��������

Clearly� the equation for ! can be solved yielding

�m � m�� m�������� � � ������
�

!m �

�
sinm�
cosm��

��������

Now the R equation is solvable

R�r� � Jm�
q

mnr�� ��������

where 
mn are found from �������� or equivalently

Jm�
q

mna� � �� n�����	�� � � ��������

Since 
 � � �related to the zeros of Bessel�s functions�� then the Z equation has the solution

Z�z� � sinh
q

mnz� ��������

Combining the solutions of the ODEs� we have for problem ��

u�r� �� z� �
�X

m��

�X
n��

sinh
q

mnzJm�

q

mnr� �Amn cosm� �Bmn sinm�� � �����	��

��



where Amn and Bmn can be found from the generalized Fourier series of ��r� ���
The second problem follows the same pattern� replacing ������	� by

Z�H� � �� �����	��

leading to

u�r� �� z� �
�X

m��

�X
n��

sinh
	q


mn�z �H�


Jm�

q

mnr� �Cmn cosm� �Dmn sinm�� � �����	��

where Cmn and Dmn can be found from the generalized Fourier series of ��r� ���
The third problem is slightly di
erent� Since there is only one boundary condition for R� we
must solve the Z equation �������� before we solve the R equation� The boundary conditions
for the Z equation are

Z��� � Z�H� � �� �����		�

which result from �������������
�� The solution of ��������� �����		� is

Zn � sin
n�

H
z� n � �� �� � � � �����	��

The eigenvalues


n �
	
n�

H


�

� n � �� �� � � � �����	
�

should be substituted in the R equation to yield

r�rR��� �
�	

n�

H


�

r� �m�

�
R � �� �����	��

This equation looks like Bessel�s equation but with the wrong sign in front of r� term� It is
called the modi�ed Bessel�s equation and has a solution

R�r� � c�Im

	
n�

H
r


� c�Km

	
n�

H
r


� �����	��

The modi�ed Bessel functions of the �rst �Im� and the second �Km� kinds behave at zero and
in�nity similar to Jm and Ym respectively� In �gure �	 we have plotted the Bessel functions
I� through I�� In �gure �� we have plotted the Bessel functions Kn� n � �� �� �� 	� Note that
the vertical axis is through x � �� and so it is not so clear that Kn tend to � as x� ��

Therefore the solution to the third problem is

u�r� �� z� �
�X

m��

�X
n��

sin
n�

H
zIm�

n�

H
r� �Emn cosm� � Fmn sinm�� � �����	��

where Emn and Fmn can be found from the generalized Fourier series of ���� z�� The solution
of the original problem ������������� is the sum of the solutions given by �����	��� �����	��
and �����	���

�
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Problems

�� Solve Laplace�s equation

�

r
�rur�r �

�

r�
u�� � uzz � �� � � r � a� � � � � ��� � � z � H

subject to each of the boundary conditions

a�
u�r� �� �� � ��r� ��

u�r� ��H� � u�a� �� z� � �

b�
u�r� �� �� � u�r� ��H� � �

ur�a� �� z� � ���� z�

c�
uz�r� �� �� � ��r� ��

u�r� ��H� � u�a� �� z� � �

d�
u�r� �� �� � uz�r� ��H� � �

ur�a� �� z� � ��z�

�� Solve Laplace�s equation

�

r
�rur�r �

�

r�
u�� � uzz � �� � � r � a� � � � � �� � � z � H

subject to the boundary conditions

u�r� �� �� � ��

uz�r� ��H� � ��

u�r� �� z� � u�r� �� z� � ��

u�a� �� z� � ���� z��

	� Find the solution to the following steady state heat conduction problem in a box

r�u � �� � � x � L� � � y � L� � � z � W�

subject to the boundary conditions

�u

�x
� �� x � �� x � L�

��



�u

�y
� �� y � �� y � L�

u�x� y�W � � ��

u�x� y� �� � � cos
	�

L
x cos

��

L
y�

�� Find the solution to the following steady state heat conduction problem in a box

r�u � �� � � x � L� � � y � L� � � z � W�

subject to the boundary conditions

�u

�x
� �� x � �� x � L�

�u

�y
� �� y � �� y � L�

uz�x� y�W � � ��

uz�x� y� �� � � cos
	�

L
x cos

��

L
y�


� Solve the heat equation inside a cylinder

�u

�t
�

�

r

�

�r

�
r
�u

�r

�
�

�

r�
��u

���
�
��u

�z�
� � � r � a� � � � � ��� � � z � H

subject to the boundary conditions

u�r� �� �� t� � u�r� ��H� t� � ��

u�a� �� z� t� � ��

and the initial condition
u�r� �� z� �� � f�r� �� z��

��



��	 Laplace�s equation in a sphere

Laplace�s equation in spherical coordinates is given in the form

urr �
�

r
ur �

�

r�
u�� �

cot �

r�
u� �

�

r� sin� �
u�� � �� � � r � a� � � � � �� � � 	 � �� �

�������

	 is the longitude and
�

�
� � is the latitude� Suppose the boundary condition is

u�a� �� 	� � f��� 	� � �������

To solve by the method of separation of variables we assume a solution u�r� �� 	� in the form

u�r� �� 	� � R�r�!���$�	� � �����	�

Substitution in Laplace�s equation yields

	
R�� �

�

r
R�


!$�

�

r�
R!��$ �

cot �

r�
!�R$ �

�

r� sin� �
R!$�� � �

Multiplying by
r� sin� �

R!$
� we can separate the 	 dependence�

r� sin� �

�
R��

R
�

�

r

R�

R
�

�

r�
!��

!
�

cot �

r�
!�

!

�
� �$��

$
� � �

Now the ODE for 	 is
$�� � �$ � � �������

and the equation for r� � can be separated by dividing through by sin� �

r�
R��

R
� �r

R�

R
�

!��

!
� cot �

!�

!
�

�

sin� �
�

Keeping the �rst two terms on the left� we have

r�
R��

R
� �r

R�

R
� �!��

!
� cot �

!�

!
�

�

sin� �
� 
 �

Thus
r�R�� � �rR� � 
R � � �����
�

and
!�� � cot �!� � �

sin� �
!� 
! � � �

The equation for ! can be written as follows

sin� �!�� � sin � cos �!� � �
 sin� � � ��! � � � �������

��



What are the boundary conditions� Clearly� we have periodicity of $� i�e�

$��� � $���� �������

$���� � $����� � �������

The solution R�r� must be �nite at zero� i�e�

jR���j �� �������

as we have seen in other problems on a circular domain that include the pole� r � ��
Thus we can solve the ODE ������� subject to the conditions ������� � �������� This yields
the eigenvalues

�m � m� m � �� �� �� � � � ��������

and eigenfunctions

$m �

�
cosm	
sinm	

m � �� �� � � � ��������

and
$� � �� ��������

We can solve �����
� which is Euler�s equation� by trying

R�r� � r� ������	�

yielding a characteristic equation

�� � �� 
 � � � ��������

The solutions of the characteristic equation are

��
 � �
���p� � �


�
� ������
�

Thus if we take

�� �
�� �p� � �


�
��������

then
�� � ��� � ��� ��������

and

 � ���� � ��� � ��������

�Recall that the sum of the roots equals the negative of the coe�cient of the linear term and
the product of the roots equals the constant term�� Therefore the solution is

R�r� � Cr�� �Dr����	�� ��������

��



Using the boundedness condition ������� we must have D � � and the solution of �����
�
becomes

R�r� � Cr�� � ��������

Substituting 
 and � from �������� and �������� into the third ODE �������� we have

sin� �!�� � sin � cos �!� �
�
���� � ��� sin

� � �m�
�
! � � � ��������

Now� lets make the transformation
� � cos � ��������

then
d!

d�
�
d!

d�

d�

d�
� � sin �

d!

d�
������	�

and
d�!

d��
� � d

d�

�
sin �

d!

d�

�

� � cos �
d!

d�
� sin �

d�!

d��
d�

d�

� � cos �
d!

d�
� sin� �

d�!

d��
�

��������

Substitute �������� � �������� in �������� we have

sin� �
d�!

d��
� sin� � cos �

d!

d�
� sin� � cos �

d!

d�
�
�
���� � ��� sin

� � �m�
�
! � � �

Divide through by sin� � and use ��������� we get

��� ���!�� � ��!� �

�
���� � ���� m�

�� ��

�
! � � � ������
�

This is the so�called associated Legendre equation�
For m � �� the equation is called Legendre�s equation� Using power series method of

solution� one can show that Legendre�s equation �see e�g� Pinsky �������

��� ���!�� � ��!� � ���� � ���! � � � ��������

has a solution

!��� �
�X
i��

ai�
i � ��������

where

ai	� �
i�i� ��� ���� � ���

�i� ���i� ��
ai � i � �� �� �� � � � � ��������

and a�� a� may be chosen arbitrarily�

��
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If �� is an integer n� then the recurrence relation �������� shows that one of the solutions
is a polynomial of degree n� �If n is even� choose a� � �� a� �� � and if n is odd� choose
a� � �� a� �� ��� This polynomial is denoted by Pn���� The �rst four Legendre polynomials
are

P� � �

P� � �

P� �
	

�
�� � �

�

P
 �



�
�
 � 	

�
�

P� �
	


�
�� � 	�

�
�� �

	

�
�

��������

In �gure �
� we have plotted the �rst � Legendre polynomials� The orthogonality of Legendre
polynomials can be easily shownZ �

��
Pn���P����d� � �� for n �� � �����	��

or Z �

�
Pn�cos ��P��cos �� sin �d� � �� for n �� � � �����	��

��
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The other solution is not a polynomial and denoted by Qn���� In fact these functions can
be written in terms of inverse hyperbolic tangent�

Q� � tanh�� �

Q� � � tanh�� � � �

Q� �
	�� � �

�
tanh�� � � 	�

�

Q
 �

�
 � 	�

�
tanh�� � � �
�� � �

�
�

�����	��

Now back to ������
�� di
erentiating �������� m times with respect to �� one has ������
��
Therefore� one solution is

Pm
n �cos �� � sinm �

dm

d�m
Pn�cos ��� for m � n �����		�

or in terms of �

Pm
n ��� � ��� ���m�� d

m

d�m
Pn���� for m � n �����	��

which are the associated Legendre polynomials� The other solution is

Qm
n ��� � ��� ���m�� d

m

d�m
Qn���� �����	
�

�	



The general solution is then

!nm��� � APm
n �cos �� �BQm

n �cos ��� n � �� �� �� � � � �����	��

Since Qm
n has a logarithmic singularity at � � �� we must have B � �� Therefore� the

solution becomes
!nm��� � APm

n �cos �� � �����	��

Combining ��������� ��������� �������� and �����	�� we can write

u�r� �� 	� �
P�

n��An�r
nPn�cos ��

�
P�

n��

Pn
m�� r

nPm
n �cos ���Anm cosm	 �Bmn sinm	��

�����	��

where Pn�cos �� � P �
n�cos �� are Legendre polynomials� The boundary condition �������

implies

f��� 	� �
�X
n��

An�a
nPn�cos ��

�
�X
n��

nX
m��

anPm
n �cos ���Anm cosm	�Bmn sinm	� �

�����	��

The coe�cients An�� Anm� Bnm can be obtained from

An� �

R ��
�

R �
� f��� 	�Pn�cos �� sin �d�d	

��anI�
��������

Anm �

R ��
�

R �
� f��� 	�Pm

n �cos �� cosm	 sin �d�d	

�anIm
��������

Bnm �

R ��
�

R �
� f��� 	�Pm

n �cos �� sinm	 sin �d�d	

�anIm
��������

where

Im �
Z �

�
�Pm

n �cos ���� sin �d�

�
��n�m�#

��n� ���n�m�#
�

������	�

��



Problems

�� Solve Laplace�s equation on the sphere

urr �
�

r
ur �

�

r�
u�� �

cot �

r�
u� �

�

r� sin� �
u�� � �� � � r � a� � � � � �� � � 	 � ���

subject to the boundary condition

ur�a� �� 	� � f����

�� Solve Laplace�s equation on the half sphere

urr �
�

r
ur �

�

r�
u�� �

cot �

r�
u� �

�

r� sin� �
u�� � �� � � r � a� � � � � �� � � 	 � ��

subject to the boundary conditions

u�a� �� 	� � f��� 	��

u�r� �� �� � u�r� �� �� � ��

	� Solve Laplace�s equation on the surface of the sphere of radius a�

�




SUMMARY
Heat Equation

ut � k�uxx � uyy�

ut � k�uxx � uyy � uzz�

ut � k

�
�

r

�

�r

�
r
�u

�r

�
�

�

r�
��u

���

�

Wave equation
utt � c��uxx � uyy� � �

utt � c��uxx � uyy � uzz� � �

utt � c�
�
�

r

�

�r

�
r
�u

�r

�
�

�

r�
��u

���

�

Laplace�s Equation
uxx � uyy � uzz � �

�

r
�rur�r �

�

r�
u�� � uzz � �

urr �
�

r
ur �

�

r�
u�� �

cot �

r�
u� �

�

r� sin� �
u		 � �

Bessel�s Equation �inside a circle�

�rR�m�
� �

�

r � m�

r

�
Rm � �� m � �� �� �� � � �

jRm���j ��
Rm�a� � �

Rm�r� � Jm

	q

mnr



eigenfunctions

Jm

	q

mna



� � equation for eigenvalues�

Bessel�s Equation �outside a circle�

�rR�m�
� �

�

r � m�

r

�
Rm � �� m � �� �� �� � � �

Rm � � as r��
Rm�a� � �

Rm�r� � Ym

	q

mnr



eigenfunctions

Ym

	q

mna



� � equation for eigenvalues�

��



Modi�ed Bessel�s Equation

�rR�m�
� �

�

�r �

m�

r

�
Rm � �� m � �� �� �� � � �

jRm���j ��
Rm�r� � C�mIm �
r� � C�mKm�
r�

Legendre�s Equation
��� ���!�� � ��!� � ��� � ��! � �

!��� � C�Pn��� � C�Qn���

� � n

Associated Legendre Equation

��� ���!�� � ��!� �

�
��� � ��� m�

�� ��

�
! � �

!��� � C�P
m
n ��� � C�Q

m
n ���

� � n

��



� Separation of Variables�Nonhomogeneous Problems

In this chapter� we show how to solve nonhomogeneous problems via the separation of
variables method� The �rst section will show how to deal with inhomogeneous boundary
conditions� The second section will present the method of eigenfunctions expansion for the
inhomogeneous heat equation in one space variable� The third section will give the solution
of the wave equation in two dimensions� We close the chapter with the solution of Poisson�s
equation�

��� Inhomogeneous Boundary Conditions

Consider the following inhomogeneous heat conduction problem�

ut � kuxx � S�x� t�� � � x � L �
�����

subject to the inhomogeneous boundary conditions

u��� t� � A�t�� �
�����

u�L� t� � B�t�� �
���	�

and an initial condition
u�x� �� � f�x�� �
�����

Find a function w�x� t� satisfying the boundary conditions �
�������
���	�� It is easy to see
that

w�x� t� � A�t� �
x

L
�B�t�� A�t�� �
���
�

is one such function�
Let

v�x� t� � u�x� t�� w�x� t� �
�����

then clearly
v��� t� � u��� t�� w��� t� � A�t�� A�t� � � �
�����

v�L� t� � u�L� t�� w�L� t� � B�t�� B�t� � � �
�����

i�e� the function v�x� t� satis�es homogeneous boundary conditions� The question is� what
is the PDE satis�ed by v�x� t�� To this end� we di
erentiate �
����� twice with respect to x
and once with respect to t

vx�x� t� � ux � �

L
�B�t�� A�t�� �
�����

vxx � uxx � � � uxx �
������

vt�x� t� � ut � x

L

�
�B�t�� �A�t�

�
� �A�t� �
������

��



and substitute in �
�����

vt � �A�t� �
x

L

�
�B�t�� �A�t�

�
� kvxx � S�x� t�� �
������

Thus
vt � kvxx � %S�x� t� �
����	�

where
%S�x� t� � S�x� t�� �A�t�� x

L

�
�B�t�� �A�t�

�
� �
������

The initial condition �
����� becomes

v�x� �� � f�x�� A���� x

L
�B���� A���� � %f�x�� �
����
�

Therefore� we have to solve an inhomogeneous PDE �
����	� subject to homogeneous bound�
ary conditions�
�������
����� and the initial condition �
����
��

If the boundary conditions were of a di
erent type� the idea will still be the same� For
example� if

u��� t� � A�t� �
������

ux�L� t� � B�t� �
������

then we try
w�x� t� � ��t�x� ��t�� �
������

At x � ��
A�t� � w��� t� � ��t�

and at x � L�
B�t� � wx�L� t� � ��t��

Thus
w�x� t� � B�t�x � A�t� �
������

satis�es the boundary conditions �
��������
�������
Remark� If the boundary conditions are independent of time� we can take the steady

state solution as w�x��

��



Problems

�� For each of the following problems obtain the function w�x� t� that satis�es the boundary
conditions and obtain the PDE

a�
ut�x� t� � kuxx�x� t� � x� � � x � L

ux��� t� � ��

u�L� t� � t�

b�
ut�x� t� � kuxx�x� t� � x� � � x � L

u��� t� � ��

ux�L� t� � ��

c�
ut�x� t� � kuxx�x� t� � x� � � x � L

ux��� t� � t�

ux�L� t� � t��

�� Same as problem � for the wave equation

utt � c�uxx � xt� � � x � L

subject to each of the boundary conditions

a�
u��� t� � � u�L� t� � t

b�
ux��� t� � t ux�L� t� � t�

c�
u��� t� � � ux�L� t� � t

d�
ux��� t� � � ux�L� t� � �

��



��� Method of Eigenfunction Expansions

In this section� we consider the solution of the inhomogeneous heat equation

ut � kuxx � S�x� t�� � � x � L �
�����

u��� t� � �� �
�����

u�L� t� � �� �
���	�

u�x� �� � f�x�� �
�����

The solution of the homogeneous PDE leads to the eigenfunctions

�n�x� � sin
n�

L
x� n � �� �� � � � �
���
�

and eigenvalues


n �
	
n�

L


�

� n � �� �� � � � �
�����

Clearly the eigenfunctions depend on the boundary conditions and the PDE� Having the
eigenfunctions� we now expand the source term

S�x� t� �
�X
n��

sn�t��n�x�� �
�����

where

sn�t� �

R L
� S�x� t��n�x�dxR L

� ��
n�x�dx

� �
�����

Let

u�x� t� �
�X
n��

un�t��n�x�� �
�����

then

f�x� � u�x� �� �
�X
n��

un����n�x�� �
������

Since f�x� is known� we have

un��� �

R L
� f�x��n�x�dxR L

� ��
n�x�dx

� �
������

Substitute u�x� t� from �
����� and its derivatives and S�x� t� from �
����� into �
������ we
have �X

n��

�un�t��n�x� �
�X
n��

��k
n�un�t��n�x� �
�X
n��

sn�t��n�x�� �
������

Recall that uxx gives a series with ���n�x� which is �
n�n� since 
n are the eigenvalues corre�
sponding to �n� Combining all three sums in �
������� one has

�X
n��

f �un�t� � k
nun�t�� sn�t�g�n�x� � �� �
����	�

��



Therefore
�un�t� � k
nun�t� � sn�t�� n � �� �� � � � �
������

This inhomogeneous ODE should be combined with the initial condition �
�������
The solution of �
������� �
������ is obtained by the method of variation of parameters

�see e�g� Boyce and DiPrima�

un�t� � un���e
�
nkt �

Z t

�
sn���e

�
nk�t���d�� �
����
�

It is easy to see that un�t� above satis�es �
������ and �
������� We summarize the solution
by �
�������
����
���
������ and �
������

Example
ut � uxx � �� � � x � � �
������

ux��� t� � �� �
������

u��� t� � �� �
������

u�x� �� � x��� x�� �
������

The function w�x� t� to satisfy the inhomogeneous boundary conditions is

w�x� t� � �x� �� �
������

The function
v�x� t� � u�x� t�� w�x� t� �
������

satis�es the following PDE
vt � vxx � �� �
������

since wt � wxx � �� The initial condition is

v�x� �� � x��� x�� ��x� �� � x��� x� � ���� x� � �x � ����� x� �
����	�

and the homogeneous boundary conditions are

vx��� t� � �� �
������

v��� t� � �� �
����
�

The eigenfunctions �n�x� and eigenvalues 
n satisfy

���n�x� � 
n�n � �� �
������

��n��� � �� �
������

�n��� � �� �
������

Thus

�n�x� � cos�n� �

�
��x� n � �� �� � � � �
������

��




n �
�
�n� �

�
��
��
� �
���	��

Expanding S�x� t� � � and v�x� t� in these eigenfunctions we have

� �
�X
n��

sn�n�x� �
���	��

where

sn �

R �
� � � cos�n� �

�
��xdxR �

� cos��n� �
�
��xdx

�
�����n��
��n� ���

� �
���	��

and

v�x� t� �
�X
n��

vn�t� cos�n� �

�
��x� �
���		�

The partial derivatives of v�x� t� required are

vt�x� t� �
�X
n��

�vn�t� cos�n� �

�
��x� �
���	��

vxx�x� t� � �
�X
n��

�
�n� �

�
��
��
vn�t� cos�n� �

�
��x� �
���	
�

Thus� upon substituting �
���	����
���	
� and �
���	�� into �
������� we get

�vn�t� �
�
�n� �

�
��
��
vn�t� � sn� �
���	��

The initial condition vn��� is given by the eigenfunction expansion of v�x� ��� i�e�

�x � ����� x� �
�X
n��

vn��� cos�n� �

�
��x �
���	��

so

vn��� �

R �
� �x � ����� x� cos�n� �

�
��xdxR �

� cos��n� �
�
��xdx

� �
���	��

The solution of �
���	�� is

vn�t� � vn���e
���n� �

�
���

�
t � sn

Z t

�
e���n�

�
�
���

�
�t���d�

Performing the integration

vn�t� � vn���e
���n� �

�
���

�
t � sn

�� e���n�
�
�
���

�
th

�n� �
�
��
i� �
���	��

where vn���� sn are given by �
���	�� and �
���	�� respectively�

�	



Problems

�� Solve the heat equation

ut � kuxx � x� � � x � L

subject to the initial condition
u�x� �� � x�L� x�

and each of the boundary conditions

a�
ux��� t� � ��

u�L� t� � t�

b�
u��� t� � ��

ux�L� t� � ��

c�
ux��� t� � t�

ux�L� t� � t��

�� Solve the heat equation

ut � uxx � e�t� � � x � �� t � ��

subject to the initial condition

u�x� �� � cos �x� � � x � ��

and the boundary condition
ux��� t� � ux��� t� � ��

��



��� Forced Vibrations

In this section we solve the inhomogeneous wave equation in two dimensions describing the
forced vibrations of a membrane�

utt � c�r�u� S�x� y� t� �
�	���

subject to the boundary condition

u�x� y� t� � �� on the boundary� �
�	���

and initial conditions
u�x� y� �� � ��x� y�� �
�	�	�

ut�x� y� �� � ��x� y�� �
�	���

Since the boundary condition is homogeneous� we can expand the solution u�x� y� t� and the
forcing term S�x� y� t� in terms of the eigenfunctions �n�x� y�� i�e�

u�x� y� t� �
�X
i��

ui�t��i�x� y�� �
�	�
�

S�x� y� t� �
�X
i��

si�t��i�x� y�� �
�	���

where
r��i � �
i�i� �
�	���

�i � �� on the boundary� �
�	���

and

si�t� �

R R
S�x� y� t��i�x� y�dxdyR R

��
i �x� y�dxdy

� �
�	���

Substituting �
�	�
���
�	��� into �
�	��� we have
�X
i��

"ui�t��i�x� y� � c�
�X
i��

ui�t�r��i �
�X
i��

si�t��i�x� y��

Using �
�	��� and combining all the sums� we get an ODE for the coe�cients ui�t��

"ui�t� � c�
iui�t� � si�t�� �
�	����

The solution can be found in any ODE book�

ui�t� � c� cos c
q

it� c� sin c

q

it�

Z t

�
si���

sin c
p

i�t� ��

c
p

i

d�� �
�	����

The initial conditions �
�	�	���
�	��� imply

ui��� � c� �

R R
��x� y��i�x� y�dxdyR R

��
i �x� y�dxdy

� �
�	����

�ui��� � c�c
q

i �

R R
��x� y��i�x� y�dxdyR R

��
i �x� y�dxdy

� �
�	��	�

Equations �
�	������
�	��	� can be solved for c� and c�� Thus the solution u�x� y� t� is given
by �
�	�
� with ui�t� given by �
�	������
�	��	� and si�t� are given by �
�	����

�




����� Periodic Forcing

If the forcing S�x� y� t� is a periodic function in time� we have an interesting case� Suppose

S�x� y� t� � ��x� y� cos�t� �
�	�����

then by �
�	��� we have
si�t� � �i cos�t� �
�	�����

where

�i�t� �

R R
��x� y��i�x� y�dxdyR R

��
i �x� y�dxdy

� �
�	���	�

The ODE for the unknown ui�t� becomes

"ui�t� � c�
iui�t� � �i cos�t� �
�	�����

In this case the particular solution of the nonhomogeneous is

�i
c�
i � ��

cos�t �
�	���
�

and thus
ui�t� � c� cos c

q

it� c� sin c

q

it�

�i
c�
i � ��

cos�t� �
�	�����

The amplitude ui�t� of the mode �i�x� y� is decomposed to a vibration at the natural fre�
quency c

p

i and a vibration at the forcing frequency �� What happens if � is one of the

natural frequencies� i�e�

� � c
q

i for some i� �
�	�����

Then the denominator in �
�	����� vanishes� The particular solution should not be �
�	���
�
but rather

�i
��

t sin�t� �
�	�����

The amplitude is growing linearly in t� This is called resonance�

��



Problems

�� Consider a vibrating string with time dependent forcing

utt � c�uxx � S�x� t�� � � x � L

subject to the initial conditions
u�x� �� � f�x��

ut�x� �� � ��

and the boundary conditions
u��� t� � u�L� t� � ��

a� Solve the initial value problem�

b� Solve the initial value problem if S�x� t� � cos�t� For what values of � does resonance
occur�

�� Consider the following damped wave equation

utt � c�uxx � �ut � cos�t� � � x � ��

subject to the initial conditions
u�x� �� � f�x��

ut�x� �� � ��

and the boundary conditions
u��� t� � u��� t� � ��

Solve the problem if � is small �� � � � �c��

	� Solve the following
utt � c�uxx � S�x� t�� � � x � L

subject to the initial conditions
u�x� �� � f�x��

ut�x� �� � ��

and each of the following boundary conditions

a�
u��� t� � A�t� u�L� t� � B�t�

b�
u��� t� � � ux�L� t� � �

c�
ux��� t� � A�t� u�L� t� � ��

��



�� Solve the wave equation

utt � c�uxx � xt� � � x � L�

subject to the initial conditions
u�x� �� � sin x

ut�x� �� � �

and each of the boundary conditions

a�
u��� t� � ��

u�L� t� � t�

b�
ux��� t� � t�

ux�L� t� � t��

c�
u��� t� � ��

ux�L� t� � t�

d�
ux��� t� � ��

ux�L� t� � ��


� Solve the wave equation

utt � uxx � �� � � x � L�

subject to the initial conditions
u�x� �� � f�x�

ut�x� �� � g�x�

and the boundary conditions
u��� t� � ��

ux�L� t� � B�t��

��



��� Poisson�s Equation

In this section we solve Poisson�s equation subject to homogeneous and nonhomogeneous
boundary conditions� In the �rst case we can use the method of eigenfunction expansion in
one dimension and two�

����� Homogeneous Boundary Conditions

Consider Poisson�s equation
r�u � S� �
�������

subject to homogeneous boundary condition� e�g�

u � �� on the boundary� �
�������

The problem can be solved by the method of eigenfunction expansion� To be speci�c we
suppose the domain is a rectangle of length L and height H� see �gure ���

We �rst consider the one dimensional eigenfunction expansion� i�e�

�n�x� � sin
n�

L
x� �
�����	�

and

u�x� y� �
�X
n��

un�y� sin
n�

L
x� �
�������

Substitution in Poisson�s equation� we get

�X
n��

�
u
��

n�y��
	
n�

L


�

un�y�

�
sin

n�

L
x �

�X
n��

sn�y� sin
n�

L
x� �
�����
�

where

sn�y� �
�

L

Z L

�
S�x� y� sin

n�

L
xdx� �
�������

The other boundary conditions lead to

un��� � �� �
�������

un�H� � �� �
�������

So we end up with a boundary value problem for un�y�� i�e�

u��n�y��
	
n�

L


�

un�y� � sn�y�� �
�������

subject to �
���������
��������
It requires a lengthy algebraic manipulation to show that the solution is

un�y� �
sinh n��H�y�

L

�n�
L
sinh n�H

L

Z y

�
sn��� sinh

n�

L
�d� �

sinh n�y
L

�n�
L
sinh n�H

L

Z H

y
sn��� sinh

n�

L
�H � ��d��

�
��������

��



x

y

Figure ��� Rectangular domain

So the solution is given by �
������� with un�y� and sn�y� given by �
�������� and �
�������
respectively�

Another approach� related to the �rst� is the use of two dimensional eigenfunctions� In
the example�

�nm � sin
n�

L
x sin

m�

H
y� �
��������


nm �
	
n�

L


�

�
	
m�

H


�

� �
��������

We then write the solution

u�x� y� �
�X
n��

�X
m��

unm�nm�x� y�� �
������	�

Substituting �
������	� into the equation� we get

�X
n��

�X
m��

��unm�
nm sin
n�

L
x sin

m�

H
y � S�x� y�� �
��������

Therefore �unm
nm are the coe�cients of the double Fourier series expansion of S�x� y��
that is

unm �

R L
�

RH
� S�x� y� sin n�

L
x sin m�

H
ydydx

�
nm
R L
�

RH
� sin� n�

L
x sin� m�

H
ydydx

� �
������
�

This double series may converge slower than the previous solution�

���



����� Inhomogeneous Boundary Conditions

The problem is then
r�u � S� �
�������

subject to inhomogeneous boundary condition� e�g�

u � �� on the boundary� �
�������

The eigenvalues 
i and the eigenfunctions �i satisfy

r��i � �
i�i� �
�����	�

�i � �� on the boundary� �
�������

Since the boundary condition �
������� is not homogeneous� we cannot di
erentiate the in�
�nite series term by term� But note that the coe�cients un of the expansion are given
by�

un �

R R
u�x� y��n�x� y�dxdyR R

��
n�x� y�dxdy

� � �


n

R R
ur��ndxdyR R
��
ndxdy

� �
�����
�

Using Green�s formula� i�e�Z Z
ur��ndxdy �

Z Z
�nr�udxdy �

I
�ur�n � �nru� � �nds�

substituting from �
�������� �
������� and �
�������

�
Z Z

�nSdxdy �
I
�r�n � �nds �
�������

Therefore the coe�cients un become �combining �
�����
���
��������

un � � �


n

R R
S�ndxdy �

H
�r�n � �ndsR R

��
ndxdy

� �
�������

If � � � we get �
������
�� The case 
 � � will not be discussed here�

���



Problems

�� Solve
r�u � S�x� y�� � � x � L� � � y � H�

a�
u��� y� � u�L� y� � �

u�x� �� � u�x�H� � �

Use a Fourier sine series in y�

b�
u��� y� � � u�L� y� � �

u�x� �� � u�x�H� � �

Hint� Do NOT reduce to homogeneous boundary conditions�

c�
ux��� y� � ux�L� y� � �

uy�x� �� � uy�x�H� � �

In what situations are there solutions�

�� Solve the following Poisson�s equation

r�u � e�y sin x� � � x � �� � � y � L�

u��� y� � u��� y� � ��

u�x� �� � ��

u�x� L� � f�x��

���



����� One Dimensional Boundary Value Problems

As a special case of Poisson�s equation� we brie�y discuss here the solution of bundary value
problems� e�g�

y���x� � �� � � x � � �
���	���

subject to
y��� � y��� � �� �
���	���

Clearly one can solve this trivial problem by integrating twice

y�x� �
�

�
x� � �

�
x� �
���	�	�

One can also use the method of eigenfunctions expansion� In this case the eigenvalues and
eigenfunctions are obtained by solving

y���x� � 
y�x�� � � x � � �
���	���

subject to the same boundary conditions� The eigenvalues are


n � � �n��� � n � �� �� � � � �
���	�
�

and the eigenfunctions are

�n � sinn�x� n � �� �� � � � � �
���	���

Now we expand the solution y�x� and the right hand side in terms of these eigenfunctions

y�x� �
�X
n��

yn sinn�x� �
���	���

� �
�X
n��

rn sinn�x� �
���	���

The coe�cients rn can be found easily �see Chapter 	�

rn �

��
�

�

n�
n odd

� n even
�
���	���

Substituting the expansions in the equation and comparing coe�cients� we get

yn �
rn

n

�
���	����

that is

yn �

���
��
� �

�n��

n odd

� n even
�
���	����

This is the Fourier sine series representation of the solution given earlier�

Can do lab 	

��	



Problems

�� Find the eigenvalues and corresponding eigenfunctions in each of the following boundary
value problems�

�a� y�� � 
�y � � � � x � a y���� � y��a� � �
�b� y�� � 
�y � � � � x � a y��� � � y�a� � �
�c� y�� � 
�y � � � � x � a y��� � y��a� � �
�d� y�� � 
�y � � � � x � a y��� � � y��a� � �

�� Find the eigenfunctions of the following boundary value problem�

y�� � 
�y � � � � x � �� y��� � y���� y���� � y�����

	� Obtain the eigenvalues and eigenfunctions of the problem�

y�� � y� � �
� ��y � � � � x � � y��� � y��� � �

�� Obtain the orthonormal set of eigenfunctions for the problem�
�a� y�� � 
y � � � � x � � y���� � � y��� � �
�b� y�� � �� � 
�y � � � � x � � y��� � � y��� � �
�c� y�� � 
y � � � � � x � � y����� � � y���� � �

���



SUMMARY
Nonhomogeneous problems

�� Find a function w that satis�es the inhomogeneous boundary conditions �except for
Poisson�s equation��

�� Let v � u� w� then v satis�es an inhomogeneous PDE with homogeneous boundary
conditions�

	� Solve the homogeneous equation with homogeneous boundary conditions to obtain
eigenvalues and eigenfunctions�

�� Expand the solution v� the right hand side �source�sink� and initial condition�s� in
eigenfunctions series�


� Solve the resulting inhomogeneous ODE�

��




� Classi�cation and Characteristics

In this chapter we classify the linear second order PDEs� This will require a discussion of
transformations� characteristic curves and canonical forms� We will show that there are three
types of PDEs and establish that these three cases are in a certain sense typical of what
occurs in the general theory� The type of equation will turn out to be decisive in establishing
the kind of initial and boundary conditions that serve in a natural way to determine a
solution uniquely �see e�g� Garabedian ��������

��� Physical Classi�cation

Partial di
erential equations can be classi�ed as equilibrium problems and marching prob�
lems� The �rst class� equilibrium or steady state problems are also known as elliptic� For
example� Laplace�s or Poisson�s equations are of this class� The marching problems include
both the parabolic and hyperbolic problems� i�e� those whose solution depends on time�

��� Classi�cation of Linear Second Order PDEs

Recall that a linear second order PDE in two variables is given by

Auxx �Buxy � Cuyy �Dux � Euy � Fu � G �������

where all the coe�cients A through F are real functions of the independent variables x� y�
De�ne a discriminant ��x� y� by

��x�� y�� � B��x�� y��� �A�x�� y��C�x�� y��� �������

�Notice the similarity to the discriminant de�ned for conic sections��

De�nition �� An equation is called hyperbolic at the point �x�� y�� if ��x�� y�� � �� It is
parabolic at that point if ��x�� y�� � � and elliptic if ��x�� y�� � ��

The classi�cation for equations with more than two independent variables or with higher
order derivatives are more complicated� See Courant and Hilbert �
��

Example�
utt � c�uxx � �

A � �� B � �� C � �c�

Therefore�
� � �� � � � ���c�� � �c� 
 �

Thus the problem is hyperbolic for c �� � and parabolic for c � ��

The transformation leads to the discovery of special loci known as characteristic curves
along which the PDE provides only an incomplete expression for the second derivatives�
Before we discuss transformation to canonical forms� we will motivate the name and explain
why such transformation is useful� The name canonical form is used because this form

���



corresponds to particularly simple choices of the coe�cients of the second partial derivatives�
Such transformation will justify why we only discuss the method of solution of three basic
equations �heat equation� wave equation and Laplace�s equation�� Sometimes� we can obtain
the solution of a PDE once it is in a canonical form �several examples will be given later in this
chapter�� Another reason is that characteristics are useful in solving �rst order quasilinear
and second order linear hyperbolic PDEs� which will be discussed in the next chapter� �In
fact nonlinear �rst order PDEs can be solved that way� see for example F� John ��������

To transform the equation into a canonical form� we �rst show how a general transfor�
mation a
ects equation �������� Let �� � be twice continuously di
erentiable functions of
x� y

� � ��x� y�� �����	�

� � ��x� y�� �������

Suppose also that the Jacobian J of the transformation de�ned by

J �






 �x �y
�x �y






 �����
�

is non zero� This assumption is necessary to ensure that one can make the transformation
back to the original variables x� y�

Use the chain rule to obtain all the partial derivatives required in �������� It is easy to see
that

ux � u��x � u��x �������

uy � u��y � u��y� �������

The second partial derivatives can be obtained as follows�

uxy � �ux�y � �u��x � u��x�y

� �u��x�y � �u��x�y

� �u��y�x � u��xy � �u��y�x � u��xy

Now use �������

uxy � �u���y � u���y��x � u��xy � �u���y � u���y��x � u��xy�

Reorganize the terms

uxy � u���x�y � u����x�y � �y�x� � u���x�y � u��xy � u��xy� �������

In a similar fashion we get uxx� uyy

uxx � u���
�
x � �u���x�x � u���

�
x � u��xx � u��xx� �������

uyy � u���
�
y � �u���y�y � u���

�
y � u��yy � u��yy� ��������

���



Introducing these into ������� one �nds after collecting like terms

A�u�� �B�u�� � C�u�� �D�u� � E�u� � F �u � G� ��������

where all the coe�cients are now functions of �� � and

A� � A��x �B�x�y � C��y ��������

B� � �A�x�x �B��x�y � �y�x� � �C�y�y ������	�

C� � A��x �B�x�y � C��y ��������

D� � A�xx �B�xy � C�yy �D�x � E�y ������
�

E� � A�xx �B�xy � C�yy �D�x � E�y ��������

F � � F ��������

G� � G� ��������

The resulting equation �������� is in the same form as the original one� The type of the
equation �hyperbolic� parabolic or elliptic� will not change under this transformation� The
reason for this is that

�� � �B��� � �A�C� � J��B� � �AC� � J�� ��������

and since J �� �� the sign of �� is the same as that of �� Proving �������� is not complicated
but de�nitely messy� It is left for the reader as an exercise using a symbolic manipulator
such as MACSYMA or MATHEMATICA�

The classi�cation depends only on the coe�cients of the second derivative terms and thus
we write ������� and �������� respectively as

Auxx �Buxy � Cuyy � H�x� y� u� ux� uy� ��������

and
A�u�� �B�u�� � C�u�� � H���� �� u� u�� u��� ��������

���



Problems

�� Classify each of the following as hyperbolic� parabolic or elliptic at every point �x� y� of
the domain

a� x uxx � uyy � x�

b� x� uxx � �xy uxy � y�uyy � ex

c� exuxx � eyuyy � u
d� uxx � uxy � xuyy � � in the left half plane �x � ��
e� x�uxx � �xyuxy � y�uyy � xyux � y�uy � �
f� uxx � xuyy � � �Tricomi equation�

�� Classify each of the following constant coe�cient equations

a� �uxx � 
uxy � uyy � ux � uy � �
b� uxx � uxy � uyy � ux � �
c� 	uxx � ��uxy � 	uyy � �
d� uxx � �uxy � 	uyy � �ux � 
uy � u � ex

e� �uxx � �uxy � �uyy � 	u � �
f� uxx � 
uxy � �uyy � �uy � sin x

	� Use any symbolic manipulator �e�g� MACSYMA or MATHEMATICA� to prove ���������
This means that a transformation does NOT change the type of the PDE�

���



��� Canonical Forms

In this section we discuss canonical forms� which correspond to particularly simple choices of
the coe�cients of the second partial derivatives of the unknown� To obtain a canonical form�
we have to transform the PDE which in turn will require the knowledge of characteristic
curves� Three equivalent properties of characteristic curves� each can be used as a de�nition�
�� Initial data on a characteristic curve cannot be prescribed freely� but must satisfy a
compatibility condition�
�� Discontinuities �of a certain nature� of a solution cannot occur except along characteristics�
	� Characteristics are the only possible �branch lines of solutions� i�e� lines for which the
same initial value problems may have several solutions�

We now consider speci�c choices for the functions �� �� This will be done in such a way
that some of the coe�cients A�� B�� and C� in �������� become zero�

����� Hyperbolic

Note that A�� C� are similar and can be written as

A��x �B�x�y � C��y ���	�����

in which � stands for either � or �� Suppose we try to choose �� � such that A� � C� � �� This
is of course possible only if the equation is hyperbolic� �Recall that �� � �B�����A�C� and
for this choice �� � �B��� � �� Since the type does not change under the transformation�
we must have a hyperbolic PDE�� In order to annihilate A� and C� we have to �nd � such
that

A��x �B�x�y � C��y � �� ���	�����

Dividing by ��y � the above equation becomes

A

�
�x
�y

��

�B

�
�x
�y

�
� C � �� ���	���	�

Along the curve
��x� y� � constant� ���	�����

we have
d� � �xdx� �ydy � �� ���	���
�

Therefore�
�x
�y

� �dy

dx
���	�����

and equation ���	���	� becomes

A

�
dy

dx

��

� B
dy

dx
� C � �� ���	�����

���



This is a quadratic equation for
dy

dx
and its roots are

dy

dx
�

B �pB� � �AC

�A
� ���	�����

These equations are called characteristic equations and are ordinary di
ential equations
for families of curves in x� y plane along which � � constant� The solutions are called
characteristic curves� Notice that the discriminant is under the radical in ���	����� and since
the problem is hyperbolic� B� � �AC � �� there are two distinct characteristic curves� We
can choose one to be ��x� y� and the other ��x� y�� Solving the ODEs ���	������ we get

���x� y� � C�� ���	�����

���x� y� � C�� ���	������

Thus the transformation
� � ���x� y� ���	������

� � ���x� y� ���	������

will lead to A� � C� � � and the canonical form is

B�u�� � H� ���	����	�

or after division by B�

u�� �
H�

B� � ���	������

This is called the �rst canonical form of the hyperbolic equation�
Sometimes we �nd another canonical form for hyperbolic PDEs which is obtained by

making a transformation
� � � � � ���	����
�

� � � � �� ���	������

Using ���	���������	����� for this transformation one has

u�� � u�� � H����� �� u� u�� u��� ���	������

This is called the second canonical form of the hyperbolic equation�

Example
y�uxx � x�uyy � � for x � �� y � � ���	������

A � y�

B � �

C � �x�

� � �� �y���x�� � �x�y� � �

���



The equation is hyperbolic for all x� y of interest�

The characteristic equation

dy

dx
�

��p�x�y�

�y�
�
��xy
�y�

� �x
y
� ���	������

These equations are separable ODEs and the solutions are

�

�
y� � �

�
x� � c�

�

�
y� �

�

�
x� � c�

The �rst is a family of hyperbolas and the second is a family of circles �see �gure ����
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Figure ��� The families of characteristics for the hyperbolic example

We take then the following transformation

� �
�

�
y� � �

�
x� ���	������

� �
�

�
y� �

�

�
x� ���	������

Evaluate all derivatives of �� � necessary for ������� � ��������

�x � �x� �y � y� �xx � ��� �xy � �� �yy � �

�x � x� �y � y� �xx � �� �xy � �� �yy � ��

Substituting all these in the expressions for B�� D�� E� �you can check that A� � C� � ��

B� � �y���x�x � ���x��y � y � ��x�y� � �x�y� � ��x�y��

D� � y����� � ��x�� � � � �x� � y��

���



E� � y� � � � ��x�� � � � y� � x��

Now solve ���	������ � ���	������ for x� y

x� � � � ��

y� � � � ��

and substitute in B�� D�� E� we get

���� � ���� � ��u�� � ��� � � � � � ��u� � �� � � � � � ��u� � �

���� � ���u�� � ��u� � ��u� � �

u�� �
�

���� � ���
u� � �

���� � ���
u� ���	������

This is the �rst canonical form of ���	�������

����� Parabolic

Since �� � �� B� � �AC � � and thus

B � ��
p
A
p
C� ���	�����

Clearly we cannot arrange for both A� and C� to be zero� since the characteristic equation
���	����� can have only one solution� That means that parabolic equations have only one
characteristic curve� Suppose we choose the solution ���x� y� of ���	�����

dy

dx
�

B

�A
���	�����

to de�ne
� � ���x� y�� ���	���	�

Therefore A� � ��

Using ���	����� we can show that

� � A� � A��x �B�x�y � C��y
� A��x � �

p
A
p
C�x�y � C��y

�
�p

A�x �
p
C�y

�� ���	�����

It is also easy to see that

B� � �A�x�x �B��x�y � �y�x� � �C�y�y
� ��

p
A�x �

p
C�y��

p
A�x �

p
C�y�

� �

��	



The last step is a result of ���	������ Therefore A� � B� � �� To obtain the canonical form

we must choose a function ��x� y�� This can be taken judiciously as long as we ensure that
the Jacobian is not zero�

The canonical form is then
C�u�� � H�

and after dividing by C� �which cannot be zero� we have

u�� �
H�

C� � ���	���
�

If we choose � � ���x� y� instead of ���	���	�� we will have C� � �� In this case B� � �
because the last factor

p
A�x �

p
C�y is zero� The canonical form in this case is

u�� �
H�

A�
���	�����

Example
x�uxx � �xyuxy � y�uyy � ex ���	�����

A � x�

B � ��xy
C � y�

� � ���xy�� � � � x� � y� � �x�y� � �x�y� � ��

Thus the equation is parabolic for all x� y� The characteristic equation ���	����� is

dy

dx
�
��xy
�x�

� �y

x
� ���	�����

Solve
dy

y
� �dx

x

ln y � lnx � C

In �gure �� we sketch the family of characteristics for ���	������ Note that since the problem
is parabolic� there is ONLY one family�

Therefore we can take � to be this family

� � ln y � lnx ���	�����

and � is arbitrary as long as J �� �� We take

� � x� ���	������

���
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Figure ��� The family of characteristics for the parabolic example

Computing the necessary derivatives of �� � we have

�x �
�

x
� �y �

�

y
� �xx � � �

x�
� �xy � �� �yy � � �

y�

�x � �� �y � �xx � �xy � �yy � ��

Substituting these derivatives in the expressions for C�� D�� E� �recall that A� � B� � � �

C� � x� � �

D� � x� � �� �

x�
�� �xy � � � y��� �

y�
� � ��� � � ��

E� � ��

The equation in the canonical form � H� � �D�u� �G� in this case�

u�� �
�u� � ex

x�

Now we must eliminate the old variables� Since x � � we have

u�� �
�

��
u� �

�

��
e�� ���	������

Note that a di
erent choice for � will lead to a di
erent right hand side in ���	�������

����� Elliptic

This is the case that � � � and therefore there are NO real solutions to the characteristic
equation ���	������ Suppose we solve for the complex valued functions � and �� We now
de�ne

� �
� � �

�
���	�	���

� �
� � �

�i
���	�	���

��




that is � and � are the real and imaginary parts of �� Clearly � is the complex conjugate
of � since the coe�cients of the characteristic equation are real� If we use these functions
��x� y� and ��x� y� we get an equation for which

B�� � �� A�� � C��� ���	�	�	�

To show that ���	�	�	� is correct� recall that our choice of �� � led to A� � C� � �� These
are

A� � �A��
x�B�x�y�C�

�
y���A��

x�B�x�y�C�
�
y��i��A�x�x�B��x�y��y�x���C�y�y� � �

C� � �A��
x�B�x�y�C�

�
y���A��

x�B�x�y�C�
�
y��i��A�x�x�B��x�y��y�x���C�y�y� � �

Note the similarity of the terms in each bracket to those in ���	����������	������

A� � �A�� � C��� � iB�� � �

C� � �A�� � C���� iB�� � �

where the double starred coe�cients are given as in ���	����������	������ except that �� �
replace �� � correspondingly� These last equations can be satis�ed if and only if ���	�	�	� is
satis�ed�

Therefore
A��u�� � A��u�� � H����� �� u� u�� u��

and the canonical form is

u�� � u�� �
H��

A��
� ���	�	���

Example
exuxx � eyuyy � u ���	�	�
�

A � ex

B � �

C � ey

� � �� � �exey � �� for all x� y

The characteristic equation

dy

dx
�

��p��exey
�ex

�
��ipexey

�ex
� �i

s
ey

ex

dy

ey��
� �i dx

ex��
�

Therefore
� � ��e�y�� � �ie�x��

� � ��e�y�� � �ie�x��

���



The real and imaginary parts are�
� � ��e�y�� ���	�	���

� � ��e�x��� ���	�	���

Evaluate all necessary partial derivatives of �� �

�x � �� �y � e�y��� �xx � �� �xy � �� �yy � ��

�
e�y��

�x � e�x��� �y � �� �xx � ��

�
e�x��� �xy � �� �yy � �

Now� instead of using both transformations� we recall that ���	����������	������ are valid with
�� � instead of �� �� Thus

A� � ex � � � � � ey
�
e�y��

��
� �

B� � � � � � � � � as can be expected

C� � ex
�
e�x��

��
� � � � � � as can be expected

D� � � � � � ey
	
��

�
e�y��



� ��

�
ey��

E� � ex
	
��

�
e�x��



� � � � � ��

�
ex��

F � � ��
H� � �D�u� � E�u� � F �u �

�

�
ey��u� �

�

�
ex��u� � u�

Thus

u�� � u�� �
�

�
ey��u� �

�

�
ex��u� � u�

Using ���	�	�������	�	��� we have

ex�� � � �

�

ey�� � � �

�

and therefore the canonical form is

u�� � u�� � � �

�
u� � �

�
u� � u� ���	�	���

���



Problems

�� Find the characteristic equation� characteristic curves and obtain a canonical form for
each

a� x uxx � uyy � x�

b� uxx � uxy � xuyy � � �x � �� all y�
c� x�uxx � �xyuxy � y�uyy � xyux � y�uy � �
d� uxx � xuyy � �
e� uxx � y�uyy � y
f� sin� xuxx � sin �xuxy � cos� xuyy � x

�� Use Maple to plot the families of characteristic curves for each of the above�

	� Classify the following PDEs�

�a�
��u

�t�
�
��u

�x�
�
�u

�x
� �e�kt

�b�
��u

�x�
� ��u

�x�y
�
�u

�y
� �

�� Find the characteristics of each of the following PDEs�

�a�
��u

�x�
� 	

��u

�x�y
� �

��u

�y�
� �

�b�
��u

�x�
� �

��u

�x�y
�
��u

�y�
� �


� Obtain the canonical form for the following elliptic PDEs�

�a�
��u

�x�
�

��u

�x�y
�
��u

�y�
� �

�b�
��u

�x�
� �

��u

�x�y
� 


��u

�y�
�
�u

�y
� �

�� Transform the following parabolic PDEs to canonical form�

�a�
��u

�x�
� �

��u

�x�y
� �

��u

�y�
�
�u

�x
� exy � �

�b�
��u

�x�
� �

��u

�x�y
�
��u

�y�
� �

�u

�x
� �

�u

�y
� �

���



��� Equations with Constant Coe�cients

In this case the discriminant is constant and thus the type of the equation is the same
everywhere in the domain� The characteristic equation is easy to integrate�

����� Hyperbolic

The characteristic equation is
dy

dx
�
B �p�

�A
� ���������

Thus

dy �
B �p�

�A
dx

and integration yields two families of straight lines

� � y � B �
p
�

�A
x ���������

� � y � B �p�

�A
x� �������	�

Notice that if A � � then ��������� is not valid� In this case we recall that ��������� is

B�x�y � C��y � � ���������

If we divide by ��y as before we get

B
�x
�y

� C � � �������
�

which is only linear and thus we get only one characteristic family� To overcome this di�culty
we divide ��������� by ��x to get

B
�y
�x

� C

�
�y
�x

��

� � ���������

which is quadratic� Now
�y
�x

� �dx
dy

and so
dx

dy
�

B �pB� � � � � � C
�C

�
B �B

�C
or

dx

dy
� ��

dx

dy
�
B

C
� ���������

The transformation is then
� � x� ���������

� � x� B

C
y� ���������

The canonical form is similar to ���	�������

���



����� Parabolic

The only solution of ��������� is
dy

dx
�

B

�A
�

Thus

� � y � B

�A
x� ���������

Again � is chosen judiciously but in such a way that the Jacobian of the transformation is
not zero�
Can A be zero in this case� In the parabolic case A � � impliesB � � �since � � B������C
must be zero�� Therefore the original equation is

Cuyy �Dux � Euy � Fu � G

which is already in canonical form

uyy � �D
C
ux � E

C
uy � F

C
u�

G

C
� ���������

����� Elliptic

Now we have complex conjugate functions �� �

� � y � B � i
p��

�A
x� �����	���

� � y � B � i
p��

�A
x� �����	���

Therefore

� � y � B

�A
x� �����	�	�

� �
�p��

�A
x� �����	���

�Note that �� � � and the radical yields a real number�� The canonical form is similar to
���	�	����

Example
utt � c�uxx � � �wave equation� �����	�
�

A � �

B � �

C � �c�

� � �c� � � �hyperbolic��

���



The characteristic equation is �
dx

dt

��

� c� � �

and the transformation is
� � x � ct� �����	���

� � x� ct� �����	���

The canonical form can be obtained as in the previous examples

u�� � �� �����	���

This is exactly the example from Chapter � for which we had

u��� �� � F ��� �G���� �����	���

The solution in terms of x� t is then �use �����	���������	����

u�x� t� � F �x� ct� �G�x� ct�� �����	����

���



Problems

�� Find the characteristic equation� characteristic curves and obtain a canonical form for

a� �uxx � 
uxy � uyy � ux � uy � �
b� uxx � uxy � uyy � ux � �
c� 	uxx � ��uxy � 	uyy � x� �
d� uxx � �uxy � 	uyy � �ux � 
uy � u � ex

e� �uxx � �uxy � �uyy � 	u � �
f� uxx � 
uxy � �uyy � �uy � sin x

�� Use Maple to plot the families of characteristic curves for each of the above�

���



��� Linear Systems

In general� linear systems can be written in the form�

�u

�t
� A

�u

�x
�B

�u

�y
� r � � ���
���

where u is a vector valued function of t� x� y�
The system is called hyperbolic at a point �t� x� if the eigenvalues of A are all real and

distinct� Similarly at a point �t� y� if the eigenvalues of B are real and distinct�

Example The system of equations
vt � cwx ���
���

wt � cvx ���
�	�

can be written in matrix form as
�u

�t
� A

�u

�x
� � ���
���

where

u �

�
v
w

�
���
�
�

and

A �

�
� �c
�c �

�
� ���
���

The eigenvalues of A are given by

� � c� � � ���
���

or 
 � c��c� Therefore the system is hyperbolic� which we knew in advance since the system
is the familiar wave equation�

Example The system of equations
ux � vy ���
���

uy � �vx ���
���

can be written in matrix form
�w

�x
� A

�w

�y
� � ���
����

where

w �

�
u
v

�
���
����

and

A �

�
� ��
� �

�
� ���
����

The eigenvalues of A are given by

� � � � � ���
��	�

or 
 � i��i� Therefore the system is elliptic� In fact� this system is the same as Laplace�s
equation�

��	



Problems

�� Classify the behavior of the following system of PDEs in �t� x� and �t� y� space�

�u

�t
�
�v

�x
� �u

�y
� �

�v

�t
� �u

�x
�
�v

�y
� �

���



��� General Solution

As we mentioned earlier� sometimes we can get the general solution of an equation by trans�
forming it to a canonical form� We have seen one example �namely the wave equation� in
the last section�

Example
x�uxx � �xyuxy � y�uyy � �� �������

Show that the canonical form is

u�� � � for y �� � �������

uxx � � for y � �� �����	�

To solve ������� we integrate with respect to � twice �� is �xed� to get

u��� �� � �F ��� �G���� �������

Since the transformation to canonical form is

� �
y

x
� � y �arbitrary choice for �� �����
�

then

u�x� y� � yF
	
y

x



�G

	
y

x



� �������

Example

Obtain the general solution for

�uxx � 
uxy � uyy � ux � uy � �� �������

�This example is taken fromMyint�U and Debnath ��� ��� There is a mistake in their solution
which we have corrected here� The transformation

� � y � x�

� � y � x

�
� �������

leads to the canonical form

u�� �
�

	
u� � �

�
� �������

Let v � u� then ������� can be written as

v� �
�

	
v � �

�
��������

which is a �rst order linear ODE �assuming � is �xed�� Therefore

v �
�

	
� e��
����� ��������

��




Now integrating with respect to � yields

u��� �� �
�

	
� �G���e��
 � F ���� ��������

In terms of x� y the solution is

u�x� y� �
�

	

	
y � x

�



�G

	
y � x

�



e�y�x��
 � F �y � x�� ������	�

���



Problems

�� Determine the general solution of

a� uxx � �
c�
uyy � � c � constant

b� uxx � 	uxy � �uyy � �
c� uxx � uxy � �
d� uxx � ��uxy � �uyy � y

�� Transform the following equations to

U�� � cU

by introducing the new variables
U � ue����	���

where �� � to be determined

a� uxx � uyy � 	ux � �uy � u � �
b� 	uxx � �uxy � �uyy � uy � u � �

�Hint� First obtain a canonical form�

	� Show that

uxx � aut � bux � b�

�
u� d

is parabolic for a� b� d constants� Show that the substitution

u�x� t� � v�x� t�e
b
�
x

transforms the equation to

vxx � avt � de�
b
�
x

���



Summary
Equation

Auxx �Buxy � Cuyy � �Dux � Euy � Fu�G � H�x� y� u� ux� uy�

Discriminant
��x�� y�� � B��x�� y��� �A�x�� y��C�x�� y��

Class
� � � hyperbolic at the point �x�� y��

� � � parabolic at the point �x�� y��

� � � elliptic at the point �x�� y��

Transformed Equation

A�u�� �B�u�� � C�u�� � �D�u� � E�u� � F �u�G� � H���� �� u� u�� u��

where
A� � A��x �B�x�y � C��y

B� � �A�x�x �B��x�y � �y�x� � �C�y�y

C� � A��x �B�x�y � C��y

D� � A�xx �B�xy � C�yy �D�x � E�y

E� � A�xx �B�xy � C�yy �D�x � E�y

F � � F

G� � G

H� � �D�u� � E�u� � F �u�G�

dy

dx
�

B �p�

�A
characteristic equation

u�� �
H�

B� �rst canonical form for hyperbolic

u�� � u�� �
H��

B�� � � � � �� � � � � � second canonical form for hyperbolic

u�� �
H�

A�
a canonical form for parabolic

u�� �
H�

C� a canonical form for parabolic

u�� � u�� �
H��

A��
� � �� � ����� � � �� � ����i a canonical form for elliptic

���



	 Method of Characteristics

In this chapter we will discuss a method to solve �rst order linear and quasilinear PDEs�
This method is based on �nding the characteristic curve of the PDE� We will also show
how to generalize this method for a second order constant coe�cients wave equation� The
method of characteristics can be used only for hyperbolic problems which possess the right
number of characteristic families� Recall that for second order parabolic problems we have
only one family of characteristics and for elliptic PDEs no real characteristic curves exist�

	�� Advection Equation 
�rst order wave equation�

The one dimensional wave equation

��u

�t�
� c�

��u

�x�
� � �������

can be rewritten as either of the following�
�

�t
� c

�

�x

��
�

�t
� c

�

�x

�
u � � �������

�
�

�t
� c

�

�x

��
�

�t
� c

�

�x

�
u � � �����	�

since the mixed derivative terms cancel� If we let

v �
�u

�t
� c

�u

�x
�������

then ������� becomes
�v

�t
� c

�v

�x
� �� �����
�

Similarly �����	� yields
�w

�t
� c

�w

�x
� � �������

if

w �
�u

�t
� c

�u

�x
� �������

The only di
erence between �����
� and ������� is the sign of the second term� We now show
how to solve �����
� which is called the �rst order wave equation or advection equation �in
Meteorology��
Remark� Although �������������
� or ��������������� can be used to solve the one dimensional
second order wave equation ������� � we will see in section ��	 another way to solve �������
based on the results of Chapter ��

���



To solve �����
� we note that if we consider an observer moving on a curve x�t� then by
the chain rule we get

dv�x�t�� t�

dt
�
�v

�t
�
�v

�x

dx

dt
� �������

If the observer is moving at a rate
dx

dt
� c� then by comparing ������� and �����
� we �nd

dv

dt
� �� �������

Therefore �����
� can be replaced by a set of two ODEs

dx

dt
� c� ��������

dv

dt
� �� ��������

These � ODEs are easy to solve� Integration of �������� yields

x�t� � x��� � ct ��������

and the other one has a solution

v � constant along the curve given in ���������

The curve �������� is a straight line� In fact� we have a family of parallel straight lines� called
characteristics� see �gure 	��

0
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3

4

5

y

-4 -2 0 2 4
x

Figure 	�� Characteristics t � �
c
x� �

c
x���

In order to obtain the general solution of the one dimensional equation �����
� subject to
the initial value

v�x���� �� � f�x����� ������	�

�	�



we note that
v � constant along x�t� � x��� � ct

but that constant is f�x���� from ������	�� Since x��� � x�t� � ct� the general solution is
then

v�x� t� � f�x�t�� ct�� ��������

Let us show that �������� is the solution� First if we take t � �� then �������� reduces to

v�x� �� � f�x���� c � �� � f�x�����

To check the PDE we require the �rst partial derivatives of v� Notice that f is a function of
only one variable� i�e� of x� ct� Therefore

�v

�t
�
df�x� ct�

dt
�

df

d�x� ct�

d�x� ct�

dt
� �c df

d�x� ct�

�v

�x
�

df�x� ct�

dx
�

df

d�x� ct�

d�x� ct�

dx
� �

df

d�x� ct�
�

Substituting these two derivatives in �����
� we see that the equation is satis�ed�

Example �
�v

�t
� 	

�v

�x
� � ������
�

v�x� �� �

�
�
�
x � � x � �
� otherwise�

��������

The two ODEs are
dx

dt
� 	� ��������

dv

dt
� �� ��������

The solution of �������� is
x�t� � x��� � 	t ��������

and the solution of �������� is

v�x�t�� t� � v�x���� �� � constant� ��������

Using �������� the solution is then

v�x�t�� t� �

�
�
�
x��� � � x��� � �
� otherwise�

Substituting x��� from �������� we have

v�x� t� �

�
�
�
�x� 	t� � � x� 	t � �

� otherwise�
��������

The interpretation of �������� is as follows� Given a point x at time t� �nd the characteristic
through this point� Move on the characteristic to �nd the point x��� and then use the initial
value at that x��� as the solution at �x� t�� �Recall that v is constant along a characteristic��

�	�



Let�s sketch the characteristics through the points x � �� � �see �������� and Figure 	���

0

0.5

1

1.5

2

t

-4 -2 0 2 4
x

Figure 	�� � characteristics for x��� � � and x��� � �

The initial solution is sketched in the next �gure �	��

0
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-10 -5 0 5 10

Figure 	�� Solution at time t � �

This shape is constant along a characteristic� and moving at the rate of 	 units� For
example� the point x � �

�
at time t � � will be at x � 	�
 at time t � �� The solution v will

be exactly the same at both points� namely v � �
�
� The solution at several times is given in

�gure 		�

�	�



x

v

t

Figure 		� Solution at several times

Example �
�u

�t
� �

�u

�x
� e�x ��������

u�x� �� � f�x�� ������	�

The system of ODEs is
du

dt
� e�x ��������

dx

dt
� ��� ������
�

Solve ������
� to get the characteristic curve

x�t� � x���� �t� ��������

Substituting the characteristic equation in �������� yields

du

dt
� e��x�����t��

Thus
du � e�x�����tdt

u � K � �

�
e�x�����t� ��������

At t � �

f�x���� � u�x���� �� � K � �

�
e�x���

and therefore

K � f�x���� �
�

�
e�x���� ��������

�		



Substitute K in �������� we have

u�x� t� � f�x���� �
�

�
e�x��� � �

�
e�x�����t�

Now substitute for x��� from �������� we get

u�x� t� � f�x� �t� �
�

�
e��x	�t� � �

�
e�x�

or

u�x� t� � f�x� �t� �
�

�
e�x

�
e�t � �

�
� ��������

�	�



Problems

�� Solve
�w

�t
� 	

�w

�x
� �

subject to
w�x� �� � sinx

�� Solve using the method of characteristics

a�
�u

�t
� c

�u

�x
� e�x subject to u�x� �� � f�x�

b�
�u

�t
� x

�u

�x
� � subject to u�x� �� � f�x�

c�
�u

�t
� 	t

�u

�x
� u subject to u�x� �� � f�x�

d�
�u

�t
� �

�u

�x
� e�x subject to u�x� �� � cos x

e�
�u

�t
� t�

�u

�x
� �u subject to u�x� �� � 	ex

	� Show that the characteristics of

�u

�t
� �u

�u

�x
� �

u�x� �� � f�x�

are straight lines�

�� Consider the problem
�u

�t
� �u

�u

�x
� �

u�x� �� � f�x� �

���
��

� x � �
� � x

L
� � x � L

� L � x

a� Determine equations for the characteristics
b� Determine the solution u�x� t�
c� Sketch the characteristic curves�
d� Sketch the solution u�x� t� for �xed t�


� Solve the initial value problem for the damped unidirectional wave equation

vt � cvx � 
v � � v�x� �� � F �x�

�	




where 
 � � and F �x� is given�

�� �a� Solve the initial value problem for the inhomogeneous equation

vt � cvx � f�x� t� v�x� �� � F �x�

where f�x� t� and F �x� are speci�ed functions�
�b� Solve this problem when f�x� t� � xt and F �x� � sin x�

�� Solve the �signaling problem

vt � cvx � � v��� t� � G�t� �� � t ��

in the region x � ��

�� Solve the initial value problem

vt � exvx � � v�x� �� � x

�� Show that the initial value problem

ut � ux � x u�x� x� � �

has no solution� Give a reason for the problem�

�	�



	�� Quasilinear Equations

The method of characteristics is the only method applicable for quasilinear PDEs� All other
methods such as separation of variables� Green�s functions� Fourier or Laplace transforms
cannot be extended to quasilinear problems�

In this section� we describe the use of the method of characteristics for the solution of

�u

�t
� c�u� x� t�

�u

�x
� S�u� x� t� �������

u�x� �� � f�x�� �������

Such problems have applications in gas dynamics or tra�c �ow�
Equation ������� can be rewritten as a system of ODEs

dx

dt
� c�u� x� t� �����	�

du

dt
� S�u� x� t�� �������

The �rst equation is the characteristic equation� The solution of this system can be very
complicated since u appears nonlinearly in both� To �nd the characteristic curve one must
know the solution� Geometrically� the characteristic curve has a slope depending on the
solution u at that point� see �gure 	��

t

xx 0

dx___

dt
=  c

du
___

dt

= S

Figure 	�� u�x�� �� � f�x��

The slope of the characteristic curve at x� is

�

c�u�x��� x�� ��
�

�

c�f�x��� x�� ��
� �����
�

Now we can compute the next point on the curve� by using this slope �assuming a slow
change of rate and that the point is close to the previous one�� Once we have the point� we
can then solve for u at that point�

�	�



����� The Case S � �� c � c�u�

The quasilinear equation
ut � c�u�ux � � ���������

subject to the initial condition
u�x� �� � f�x� ���������

is equivalent to
dx

dt
� c�u� �������	�

x��� � � ���������

du

dt
� � �������
�

u��� �� � f���� ���������

Thus
u�x� t� � u��� �� � f��� ���������

dx

dt
� c�f����

x � tc�f���� � �� ���������

Solve ��������� for � and substitute in ��������� to get the solution�
To check our solution� we compute the �rst partial derivatives of u

�u

�t
�

du

d�

d�

dt

�u

�x
�
du

d�

d�

dx
�

Di
erentiating ��������� with respect to x and t we have

� � tc��f����f �����x � �x

� � c�f���� � tc��f����f �����t � �t

correspondingly�

Thus when recalling that
du

d�
� f ����

ut � � c�f����

� � tc��f����f ����
f ���� ���������

ux �
�

� � tc��f����f ����
f ����� ����������

Substituting these expressions in ��������� results in an identity� The initial condition
��������� is exactly ����������

�	�



Example 	
�u

�t
� u

�u

�x
� � ����������

u�x� �� � 	x� ����������

The equivalent system of ODEs is
du

dt
� � ��������	�

dx

dt
� u� ����������

Solving the �rst one yields
u�x� t� � u�x���� �� � 	x���� ��������
�

Substituting this solution in ����������

dx

dt
� 	x���

which has a solution
x � 	x���t� x���� ����������

Solve ���������� for x��� and substitute in ��������
� gives

u�x� t� �
	x

	t � �
� ����������

�	�



Problems

�� Solve the following

a�
�u

�t
� � subject to u�x� �� � g�x�

b�
�u

�t
� �	xu subject to u�x� �� � g�x�

�� Solve
�u

�t
� u

subject to
u�x� t� � � � cos x along x� �t � �

	� Let
�u

�t
� c

�u

�x
� � c � constant

a� Solve the equation subject to u�x� �� � sin x
b� If c � �� determine u�x� t� for x � � and t � � where

u�x� �� � f�x� for x � �

u��� t� � g�t� for t � �

�� Solve the following linear equations subject to u�x� �� � f�x�

a�
�u

�t
� c

�u

�x
� e�
x

b�
�u

�t
� t

�u

�x
� 


c�
�u

�t
� t�

�u

�x
� �u

d�
�u

�t
� x

�u

�x
� t

e�
�u

�t
� x

�u

�x
� x


� Determine the parametric representation of the solution satisfying u�x� �� � f�x��

a�
�u

�t
� u�

�u

�x
� 	u

���



b�
�u

�t
� t�u

�u

�x
� �u

�� Solve
�u

�t
� t�u

�u

�x
� 


subject to
u�x� �� � x�

�� Using implicit di
erentiation� verify that u�x� t� � f�x� tu� is a solution of

ut � uux � �

�� Consider the damped quasilinear wave equation

ut � uux � cu � �

where c is a positive constant�
�a� Using the method of characteristics� construct a solution of the initial value problem

with u�x� �� � f�x�� in implicit form� Discuss the wave motion and the e
ect of the damping�
�b� Determine the breaking time of the solution by �nding the envelope of the charac�

teristic curves and by using implicit di
erentiation� With � as the parameter on the initial
line� show that unless f ���� � �c� no breaking occurs�

�� Consider the one�dimensional form of Euler�s equations for isentropic �ow and assume
that the pressure p is a constant� The equations reduce to


t � 
ux � u
x � � ut � uux � �

Let u�x� �� � f�x� and 
�x� �� � g�x�� By �rst solving the equation for u and then the
equation for 
� obtain the implicit solution

u � f�x� ut� 
 �
g�x� ut�

� � tf ��x� ut�

���



����� Graphical Solution

Graphically� one can obtain the solution as follows�

u(x,0)=f(x) u(x,t)

x
0

x  + t c ( f(x  ))
0 0

u

x

Figure 	
� Graphical solution

Suppose the initial solution u�x� �� is sketched as in �gure 	
� We know that each u�x��
stays constant moving at its own constant speed c�u�x���� At time t� it moved from x� to
x��tc�f�x��� �horizontal arrow�� This process should be carried out to enough points on the
initial curve to get the solution at time t� Note that the lengths of the arrows are di
erent
and depend on c�

����� Numerical Solution

Here we discuss a general linear �rst order hyperbolic

a�x� t�ux � b�x� t�ut � c�x� t�u� d�x� t�� �����	���

Note that since b�x� t� may vanish� we cannot in general divide the equation by b�x� t� to get
it in the same form as we had before� Thus we parametrize x and t in terms of a parameter
s� and instead of taking the curve x�t�� we write it as x�s�� t�s��

The characteristic equation is now a system

dx

ds
� a�x�s�� t�s�� �����	���

x��� � � �����	�	�

dt

ds
� b�x�s�� t�s�� �����	���

t��� � � �����	�
�

du

ds
� c�x�s�� t�s��u�x�s�� t�s�� � d�x�s�� t�s�� �����	���

u��� �� � f��� �����	���

���



This system of ODEs need to be solved numerically� One possibility is the use of Runge�
Kutta method� see Lab �� This idea can also be used for quasilinear hyperbolic PDEs�

Can do lab �

����� Fan�like Characteristics

Since the slope of the characteristic�
�

c
� depends in general on the solution� one may have

characteristic curves intersecting or curves that fan�out� We demonstrate this by the follow�
ing example�

Example �
ut � uux � � ���������

u�x� �� �

�
� for x � �
� for x � ��

���������

The system of ODEs is
dx

dt
� u� �������	�

du

dt
� �� ���������

The second ODE satis�es
u�x� t� � u�x���� �� �������
�

and thus the characteristics are

x � u�x���� ��t� x��� ���������

or

x�t� �

�
t� x��� if x��� � �
�t� x��� if x��� � ��

���������

Let�s sketch those characteristics �Figure 	��� If we start with a negative x��� we obtain a
straight line with slope �� If x��� is positive� the slope is �

�
�

Since u�x���� �� is discontinuous at x��� � �� we �nd there are no characteristics through
t � �� x��� � �� In fact� we imagine that there are in�nitely many characteristics with all
possible slopes from �

�
to �� Since the characteristics fan out from x � t to x � �t we call

these fan�like characteristics� The solution for t � x � �t will be given by ��������� with
x��� � �� i�e�

x � ut

or
u �

x

t
for t � x � �t� ���������

��	
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Figure 	�� The characteristics for Example �

To summarize the solution is then

u �

���
��

� x��� � x� t � �
� x��� � x� �t � �
x
t

t � x � �t
���������

The sketch of the solution is given in �gure 	��

0

1

2

3

4

y

-10 -5 0 5 10
x

Figure 	�� The solution of Example �

����� Shock Waves

If the initial solution is discontinuous� but the value to the left is larger than that to the
right� one will see intersecting characteristics�

Example 

ut � uux � � �����
���

���



u�x� �� �

�
� x � �
� x � ��

�����
���

The solution is as in the previous example� i�e�

x�t� � u�x���� ��t� x��� �����
�	�

x�t� �

�
�t � x��� if x��� � �
t � x��� if x��� � ��

�����
���

The sketch of the characteristics is given in �gure 	��

x

t

−3 −1 1 3

Figure 	�� Intersecting characteristics

Since there are two characteristics through a point� one cannot tell on which character�
istic to move back to t � � to obtain the solution� In other words� at points of intersection
the solution u is multi�valued� This situation happens whenever the speed along the char�
acteristic on the left is larger than the one along the characteristic on the right� and thus
catching up with it� We say in this case to have a shock wave� Let x���� � x���� be two
points at t � �� then

x��t� � c �f�x������ t� x����
x��t� � c �f�x������ t� x�����

�����
�
�

If c�f�x������ � c�f�x������ then the characteristics emanating from x����� x���� will in�
tersect� Suppose the points are close� i�e� x���� � x���� � �x� then to �nd the point of
intersection we equate x��t� � x��t�� Solving this for t yields

t �
��x

�c �f�x������ � c �f�x���� � �x��
� �����
���

If we let �x tend to zero� the denominator �after dividing through by �x� tends to the
derivative of c� i�e�

t � � �

dc�f�x������

dx����

� �����
���

��




Since t must be positive at intersection �we measure time from zero�� this means that

dc

dx�
� �� �����
���

So if the characteristic velocity c is locally decreasing then the characteristics will intersect�
This is more general than the case in the last example where we have a discontinuity in the
initial solution� One can have a continuous initial solution u�x� �� and still get a shock wave�
Note that �����
��� implies that

� � t
dc�f�

dx
� �

which is exactly the denominator in the �rst partial derivative of u �see ����������������������

Example �
ut � uux � � �����
���

u�x� �� � �x� �����
����

The solution of the ODEs
du

dt
� ��

dx

dt
� u�

�����
����

is
u�x� t� � u�x���� �� � �x���� �����
����

x�t� � �x���t � x��� � x������ t�� �����
��	�

Solving for x��� and substituting in �����
���� yields

u�x� t� � � x�t�

�� t
� �����
����

This solution is unde�ned at t � �� If we use �����
��� we get exactly the same value for t�
since

f�x�� � �x� �from �����
����

c�f�x��� � u�x�� � �x� �from �����
���

dc

dx�
� ��

t � � �

�� � ��

In the next �gure we sketch the characteristics given by �����
��	�� It is clear that all
characteristics intersect at t � �� The shock wave starts at t � �� If the initial solution is
discontinuous then the shock wave is formed immediately�

���
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Figure 	�� Sketch of the characteristics for Example �

How do we �nd the shock position xs�t� and its speed� To this end� we rewrite the
original equation in conservation law form� i�e�

ut �
�

�x
q�u� � � �����
��
�

or Z �

�
utdx �

d

dt

Z �

�
udx � �qj���

This is equivalent to the quasilinear equation �����
��� if q�u� � �
�
u��

The terms �conservative form � �conservation�law form � �weak form or �divergence
form are all equivalent� PDEs having this form have the property that the coe�cients of
the derivative term are either constant or� if variable� their derivatives appear nowhere in the
equation� Normally� for PDEs to represent a physical conservation statement� this means
that the divergence of a physical quantity can be identi�ed in the equation� For example�
the conservation form of the one�dimensional heat equation for a substance whose density�

� speci�c heat� c� and thermal conductivity K� all vary with position is


c
�u

�t
�

�

�x

�
K
�u

�x

�

whereas a nonconservative form would be


c
�u

�t
�

�K

�x

�u

�x
�K

��u

�x�
�

In the conservative form� the right hand side can be identi�ed as the negative of the diver�
gence of the heat �ux �see Chapter ���

���



Consider a discontinuous initial condition� then the equation must be taken in the integral
form �����
��
�� We seek a solution u and a curve x � xs�t� across which u may have a jump�
Suppose that the left and right limits are

limx�xs�t�� u�x� t� � u�
limx�xs�t�� u�x� t� � ur

�����
����

and de�ne the jump across xs�t� by

�u� � ur � u�� �����
����

Let ��� �� be any interval containing xs�t� at time t� Then

d

dt

Z �

�
u�x� t�dx � � �q�u��� t��� q�u��� t��� � �����
����

However the left hand side is

d

dt

Z xs�t��

�
udx�

d

dt

Z �

xs�t��
udx �

Z xs�t��

�
utdx�

Z �

xs�t��
utdx � u�

dxs
dt

� ur
dxs
dt

� �����
����

Recall the rule to di
erentiate a de�nite integral when one of the endpoints depends on the
variable of di
erentiation� i�e�

d

dt

Z 	�t�

a
u�x� t�dx �

Z 	�t�

a
ut�x� t�dx� u���t�� t�

d�

dt
�

Since ut is bounded in each of the intervals separately� the integrals on the right hand side
of �����
���� tend to zero as �� x�s and � � x	s � Thus

�u�
dxs
dt

� �q��

This gives the characteristic equation for shocks

dxs
dt

�
�q�

�u�
� �����
����

Going back to the example �����
���������
��� we �nd from �����
��� that

q �
�

�
u�

and from �����
���
u� � ��

ur � ��

Therefore
dxs
dt

�
�
�
� �� � �

�
� ��

�� �
�
�� � �

�

�� �
	

�
xs��� � � �where discontinuity starts��

The solution is then

xs �
	

�
t � �� �����
����

We can now sketch this along with the other characteristics in �gure ��� Any characteristic
reaching the one given by �����
���� will stop there� The solution is given in �gure ���

���



−2 0 2 4 6 8 10
−1

0

1

2

3

4

5

6

7

x

t

xs = ( 3 / 2 ) t + 1

Figure ��� Shock characteristic for Example 
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Problems

�� Consider Burgers� equation

�


�t
� umax

�
�� �



max

�
�


�x
� �

��


�x�

Suppose that a solution exists as a density wave moving without change of shape at a velocity
V � 
�x� t� � f�x� V t��

a� What ordinary di
erential equation is satis�ed by f

b� Show that the velocity of wave propagation� V � is the same as the shock velocity
separating 
 � 
� from 
 � 
� �occuring if � � ���

�� Solve
�


�t
� 
�

�


�x
� �

subject to


�x� �� �

�
� x � �
	 x � �

	� Solve
�u

�t
� �u

�u

�x
� �

subject to

u�x� �� �

�
	 x � �
� x � �

�� Solve the above equation subject to

u�x� �� �

�
� x � ��
	 x � ��


� Solve the quasilinear equation
�u

�t
� u

�u

�x
� �

subject to

u�x� �� �

�
� x � �
	 x � �

�� Solve the quasilinear equation
�u

�t
� u

�u

�x
� �

�
�



subject to

u�x� �� �

���
��

� x � �
x � � x � �
� � � x

�� Solve the inviscid Burgers� equation

ut � uux � �

u �x� �� �

��������
�������

� for x � �

� for � � x � �

� for x � �

Note that two shocks start at t � � � and eventually intersect to create a third shock�
Find the solution for all time �analytically�� and graphically display your solution� labeling
all appropriate bounding curves�

�
�



	�� Second Order Wave Equation

In this section we show how the method of characteristics is applied to solve the second order
wave equation describing a vibrating string� The equation is

utt � c�uxx � �� c � constant� ���	���

For the rest of this chapter the unknown u�x� t� describes the displacement from rest of every
point x on the string at time t� We have shown in section ��� that the general solution is

u�x� t� � F �x� ct� �G�x� ct�� ���	���

����� In
nite Domain

The problem is to �nd the solution of ���	��� subject to the initial conditions

u�x� �� � f�x� �� � x �� ���	�����

ut�x� �� � g�x� �� � x ��� ���	�����

These conditions will specify the arbitrary functions F�G� Combining the conditions with
���	���� we have

F �x� �G�x� � f�x� ���	���	�

�cdF
dx

� c
dG

dx
� g�x�� ���	�����

These are two equations for the two arbitrary functions F and G� In order to solve the
system� we �rst integrate ���	������ thus

�F �x� �G�x� �
�

c

Z x

�
g���d�� ���	���
�

Therefore� the solution of ���	���	� and ���	���
� is

F �x� �
�

�
f�x�� �

�c

Z x

�
g���d�� ���	�����

G�x� �
�

�
f�x� �

�

�c

Z x

�
g���d�� ���	�����

Combining these expressions with ���	���� we have

u�x� t� �
f�x� ct� � f�x� ct�

�
�

�

�c

Z x	ct

x�ct
g���d�� ���	�����

This is d�Alembert�s solution to ���	��� subject to ���	���������	������

Note that the solution u at a point �x��t�� depends on f at the points �x� � ct���� and
�x�� ct����� and on the values of g on the interval �x�� ct� � x� � ct��� This interval is called

�
�



domain of dependence� In �gure ��� we see that the domain of dependence is obtained by
drawing the two characteristics

x� ct � x� � ct�

x � ct � x� � ct�

through the point �x�� t��� This behavior is to be expected because the e
ects of the initial
data propagate at the �nite speed c� Thus the only part of the initial data that can in�uence
the solution at x� at time t� must be within ct� units of x�� This is precisely the data given
in the interval �x� � ct� � x� � ct���
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Figure ��� Domain of dependence

The functions f�x�� g�x� describing the initial position and speed of the string are de�ned
for all x� The initial disturbance f�x� at a point x� will propagate at speed c whereas the
e
ect of the initial velocity g�x� propagates at all speeds up to c� This in�nite sector ��gure
�	� is called the domain of in�uence of x��

The solution ���	��� represents a sum of two waves� one is travelling at a speed c to the
right �F �x� ct�� and the other is travelling to the left at the same speed�

�
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Problems

�� Suppose that
u�x� t� � F �x� ct��

Evaluate

a�
�u

�t
�x� ��

b�
�u

�x
��� t�

�� The general solution of the one dimensional wave equation

utt � �uxx � �

is given by
u�x� t� � F �x� �t� �G�x� �t��

Find the solution subject to the initial conditions

u�x� �� � cos x �� � x ���

ut�x� �� � � �� � x ���

	� In section 	��� we suggest that the wave equation can be written as a system of two �rst
order PDEs� Show how to solve

utt � c�uxx � �

using that idea�

�





����� Semi�in
nite String

The problem is to solve the one�dimensional wave equation

utt � c�uxx � �� � � x ��� ���	�����

subject to the intial conditions

u�x� �� � f�x�� � � x ��� ���	�����

ut�x� �� � g�x�� � � x ��� ���	���	�

and the boundary condition

u��� t� � h�t�� � � t� ���	�����

Note that f�x� and g�x� are de�ned only for nonnegative x� Therefore� the solution ���	�����
holds only if the arguments of f�x� are nonnegative� i�e�

x� ct 
 �
x � ct 
 �

���	���
�

As can be seen in �gure ��� the �rst quadrant must be divided to two sectors by the charac�
teristic x� ct � �� In the lower sector I� the solution ���	����� holds� In the other sector� one
should note that a characteristic x� ct � K will cross the negative x axis and the positive
t axis�
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Figure ��� The characteristic x� ct � � divides the �rst quadrant

The solution at point �x�� t�� must depend on the boundary condition h�t�� We will show
how the dependence presents itself�

For x� ct � �� we proceed as follows�

�
�



� Combine ���	����� with the general solution ���	��� at x � �

h�t� � F ��ct� �G�ct� ���	�����

� Since x� ct � � and since F is evaluated at this negative value� we use ���	�����

F ��ct� � h�t��G�ct� ���	�����

� Now let
z � �ct � �

then
F �z� � h��z

c
��G��z�� ���	�����

So F for negative values is computed by ���	����� which requires G at positive values�
In particular� we can take x� ct as z� to get

F �x� ct� � h��x� ct

c
��G�ct� x�� ���	�����

� Now combine ���	����� with the formula ���	����� for G

F �x� ct� � h�t� x

c
��

	
�

�
f�ct� x� �

�

�c

Z ct�x

�
g���d�




� The solution in sector II is then

u�x� t� � h
	
t� x

c



� �

�
f�ct� x�� �

�c

Z ct�x

�
g���d� �

�

�
f�x � ct� �

�

�c

Z x	ct

�
g���d�

u�x� t� �

�������
������

f�x� ct� � f�x� ct�

�
�

�

�c

Z x	ct

x�ct
g���d� x� ct 
 �

h
	
t� x

c



�
f�x� ct�� f�ct� x�

�
�

�

�c

Z x	ct

ct�x
g���d� x� ct � �

���	������

Note that the solution in sector II requires the knowledge of f�x� at point B �see Figure
�
� which is the image of A about the t axis� The line BD is a characteristic �parallel
to PC�

x � ct � K�

Therefore the solution at �x�� t�� is a combination of a wave moving on the characteristic
CP and one moving on BD and re�ected by the wall at x � � to arrive at P along a
characteristic

x� ct � x� � ct��

�
�
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Figure �
� The solution at P

We now introduce several de�nitions to help us show that d�Alembert�s solution ���	�����
holds in other cases�

De�nition �� A function f�x� is called an even function if

f��x� � f�x��

De�nition �� A function f�x� is called an odd function if

f��x� � �f�x��

Note that some functions are neither�
Examples

�� f�x� � x� is an even function�
�� f�x� � x
 is an odd function�
	� f�x� � x� x� is neither odd nor even�

De�nition ��� A function f�x� is called a periodic function of period p if

f�x � p� � f�x� for all x�

The smallest such real number p is called the fundamental period�
Remark� If the boundary condition ���	����� is

u��� t� � ��

then the solution for the semi�in�nite interval is the same as that for the in�nite interval
with f�x� and g�x� being extended as odd functions for x � �� Since if f and g are odd
functions then

f��z� � �f�z��
g��z� � �g�z�� ���	������

�
�



The solution for x� ct is now

u�x� t� �
f�x� ct�� f���x� ct��

�
�

�

�c

	Z �

ct�x
g���d� �

Z x	ct

�
g���d�



� ���	������

But if we let � � �� then

Z �

ct�x
g���d� �

Z �

x�ct
g������d��

�
Z �

x�ct
�g�����d�� �

Z �

x�ct
g���d��

Now combine this integral with the last term in ���	������ to have

u�x� t� �
f�x � ct� � f�x� ct�

�
�

�

�c

Z x	ct

x�ct
g���d�

which is exactly the same formula as for x�ct 
 �� Therefore we have shown that for a semi�
in�nite string with �xed ends� one can use d�Alembert�s solution ���	����� after extending
f�x� and g�x� as odd functions for x � ��

What happens if the boundary condition is

ux��� t� � ��

We claim that one has to extend f�x�� g�x� as even functions and then use ���	������ The
details will be given in the next section�

����� Semi In
nite String with a Free End

In this section we show how to solve the wave equation

utt � c�uxx � �� � � x ��� ���	�	���

subject to
u�x� �� � f�x�� ���	�	���

ut�x� �� � g�x�� ���	�	�	�

ux��� t� � �� ���	�	���

Clearly� the general solution for x� ct 
 � is the same as before� i�e� given by ���	������ For
x � ct � �� we proceed in a similar fashion as last section� Using the boundary condition
���	�	���

� � ux��� t� �
dF �x� ct�

dx






x��

�
dG�x� ct�

dx






x��

� F ���ct� �G��ct��

Therefore
F ���ct� � �G��ct�� ���	�	�
�

�
�



Let z � �ct � � and integrate over ��� z�

F �z�� F ��� � G��z��G���� ���	�	���

From ���	���������	����� we have

F ��� � G��� �
�

�
f���� ���	�	���

Replacing z by x� ct � �� we have

F �x� ct� � G���x� ct���

or

F �x� ct� �
�

�
f�ct� x� �

�

�c

Z ct�x

�
g���d�� ���	�	���

To summarize� the solution is

u�x� t� �

����
���

f�x� ct� � f�x� ct�

�
�

�

�c

Z x	ct

x�ct
g���d�� x 
 ct

f�x� ct� � f�ct� x�

�
�

�

�c

Z x	ct

�
g���d� �

�

�c

Z ct�x

�
g���d�� x � ct�

���	�	���

Remark� If f�x� and g�x� are extended for x � � as even functions then

f�ct� x� � f���x� ct�� � f�x� ct�

and Z ct�x

�
g���d� �

Z x�ct

�
g�����d�� �

Z �

x�ct
g���d�

where � � ���
Thus the integrals can be combined to one to give

�

�c

Z x	ct

x�ct
g���d��

Therefore with this extension of f�x� and g�x� we can write the solution in the form ���	������

���



Problems

�� Solve by the method of characteristics

��u

�t�
� c�

��u

�x�
� �� x � �

subject to
u�x� �� � ��

�u

�t
�x� �� � ��

u��� t� � h�t��

�� Solve
��u

�t�
� c�

��u

�x�
� �� x � �

subject to
u�x� �� � sin x� x � �

�u

�t
�x� �� � �� x � �

u��� t� � e�t� t � ��

	� a� Solve
��u

�t�
� c�

��u

�x�
� �� � � x ��

subject to

u�x� �� �

���
��

� � � x � �
� � � x � 	
� 	 � x

�u

�t
�x� �� � ��

�u

�x
��� t� � ��

b� Suppose u is continuous at x � t � �� sketch the solution at various times�

�� Solve
��u

�t�
� c�

��u

�x�
� �� x � �� t � �

subject to
u�x� �� � ��

�u

�t
�x� �� � ��

�u

�x
��� t� � h�t��


� Give the domain of in�uence in the case of semi�in�nite string�

���



����� Finite String

This problem is more complicated because of multiple re�ections� Consider the vibrations
of a string of length L�

utt � c�uxx � �� � � x � L� ���	�����

subject to
u�x� �� � f�x�� ���	�����

ut�x� �� � g�x�� ���	���	�

u��� t� � �� ���	�����

u�L� t� � �� ���	���
�

From the previous section� we can write the solution in regions � and � �see �gure ���� i�e�
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Figure ��� Re�ected waves reaching a point in region 


u�x� t� is given by ���	����� in region � and by ���	������ with h � � in region �� The
solution in region 	 can be obtained in a similar fashion as ���	������� but now use the
boundary condition ���	���
��

In region 	� the boundary condition ���	���
� becomes

u�L� t� � F �L� ct� �G�L � ct� � �� ���	�����

Since L� ct 
 L� we solve for G

G�L� ct� � �F �L� ct��

���



Let
z � L � ct 
 L� ���	�����

then
L� ct � �L� z � L�

Thus
G�z� � �F ��L� z� ���	�����

or

G�x � ct� � �F ��L� x� ct� � ��

�
f��L� x� ct� �

�

�c

Z �L�x�ct

�
g���d�

and so adding F �x� ct� given by ���	����� to the above we get the solution in region 	�

u�x� t� �
f�x� ct�� f��L� x� ct�

�
�

�

�c

Z x�ct

�
g���d� �

�

�c

Z �L�x�ct

�
g���d��

In other regions multiply re�ected waves give the solution� �See �gure ��� showing doubly
re�ected waves reaching points in region 
��

As we remarked earlier� the boundary condition ���	����� essentially say that the initial
conditions were extended as odd functions for x � � �in this case for �L � x � ��� The other
boundary condition means that the initial conditions are extended again as odd functions
to the interval �L� �L�� which is the same as saying that the initial conditions on the interval
��L� L� are now extended periodically everywhere� Once the functions are extended to the
real line� one can use ���	����� as a solution� A word of caution� this is true only when the
boundary conditions are given by ���	���������	���
��
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Parallelogram Rule
If the four points A�B�C� and D form the vertices of a parallelogram whose sides are all

segments of characteristic curves� �see �gure ��� then the sums of the values of u at opposite
vertices are equal� i�e�

u�A� � u�C� � u�B� � u�D��

This rule is useful in solving a problem with both initial and boundary conditions�
In region R� �see �gure ��� the solution is de�ned by d�Alembert�s formula� For A � �x� t�

in region R�� let us form the parallelogram ABCD with B on the t�axis and C and D on
the characterisrtic curve from ��� ��� Thus

u�A� � �u�C� � u�B� � u�D�
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Figure ��� Use of parallelogram rule to solve the �nite string case

u�B� is a known boundary value and the others are known from R�� We can do this for
any point A in R�� Similarly for R
� One can use the solutions in R�� R
 to get the solution
in R� and so on� The limitation is that u must be given on the boundary� If the boundary
conditions are not of Dirichlet type� this rule is not helpful�

���



SUMMARY
Linear�

ut � c�x� t�ux � S�u� x� t�

u�x���� �� � f�x����

Solve the characteristic equation
dx

dt
� c�x� t�

x��� � x�

then solve
du

dt
� S�u� x� t�

u�x���� �� � f�x���� on the characteristic curve

Quasilinear�
ut � c�u� x� t�ux � S�u� x� t�

u�x���� �� � f�x����

Solve the characteristic equation
dx

dt
� c�u� x� t�

x��� � x�

then solve
du

dt
� S�u� x� t�

u�x���� �� � f�x���� on the characteristic curve

fan�like characteristics
shock waves
Second order hyperbolic equations�

In�nite string

utt � c�uxx � � c � constant� �� � x ��

u�x� �� � f�x��

ut�x� �� � g�x��

u�x� t� �
f�x� ct� � f�x� ct�

�
�

�

�c

Z x	ct

x�ct
g���d��

��




Semi in�nite string

utt � c�uxx � � c � constant� � � x ��

u�x� �� � f�x��

ut�x� �� � g�x��

u��� t� � h�t�� � � t�

u�x� t� �

�������
������

f�x� ct� � f�x� ct�

�
�

�

�c

Z x	ct

x�ct
g���d�� x� ct 
 ��

h
	
t� x

c



�
f�x� ct�� f�ct� x�

�
�

�

�c

Z x	ct

ct�x
g���d�� x� ct � ��

Semi in�nite string � free end

utt � c�uxx � � c � constant� � � x ���

u�x� �� � f�x��

ut�x� �� � g�x��

ux��� t� � h�t��

u�x� t� �

�������
������

f�x� ct� � f�x� ct�

�
�

�

�c

Z x	ct

x�ct
g���d�� x 
 ct�

Z x�ct

�
h��z�c�dz � f�x� ct� � f�ct� x�

�
�

�

�c

Z x	ct

�
g���d� �

�

�c

Z ct�x

�
g���d�� x � ct�

���




 Finite Di�erences

��� Taylor Series

In this chapter we discuss �nite di
erence approximations to partial derivatives� The ap�
proximations are based on Taylor series expansions of a function of one or more variables�

Recall that the Taylor series expansion for a function of one variable is given by

f�x � h� � f�x� �
h

�#
f ��x� �

h�

�#
f ��x� � � � � �������

The remainder is given by

f �n����
hn

n#
� ���x� x� h�� �������

For a function of more than one independent variable we have the derivatives replaced by
partial derivatives� We give here the case of � independent variables

f�x � h� y � k� � f�x� y� �
h

�#
fx�x� y� �

k

�#
fy�x� y� �

h�

�#
fxx�x� y�

�
�hk

�#
fxy�x� y� �

k�

�#
fyy�x� y� �

h


	#
fxxx�x� y� �

	h�k

	#
fxxy�x� y�

�
	hk�

	#
fxyy�x� y� �

k


	#
fyyy�x� y� � � � �

�����	�
The remainder can be written in the form

�

n#

�
h
�

�x
� k

�

�y

�n

f�x� �h� y � �k�� � � � � �� �������

Here we used a subscript to denote partial di
erentiation� We will be interested in obtaining
approximation about the point �xi� yj� and we use a subscript to denote the function values
at the point� i�e� fi j � f�xi� yj��

The Taylor series expansion for fi	� about the point xi is given by

fi	� � fi � hf �i �
h�

�#
f ��i �

h


	#
f ��i � � � � �����
�

The Taylor series expansion for fi	� j	� about the point �xi� yj� is given by

fi	� j	� � fij � �hxfx � hyfy�i j � �
h�x
�
fxx � hxhyfxy �

h�y
�
fyy�i j � � � � �������

Remark� The expansion for fi	� j about �xi� yj� proceeds as in the case of a function of one
variable�

���



��� Finite Di
erences

An in�nite number of di
erence representations can be found for the partial derivatives of
f�x� y�� Let us use the following operators�

forward di
erence operator �xfi j � fi	� j � fi j �������

backward di
erence operator rxfi j � fi j � fi�� j �������

centered di
erence �xfi j � fi	� j � fi�� j �����	�

�xfi j � fi	��� j � fi���� j �������

averaging operator �xfi j � �fi	��� j � fi���� j��� �����
�

Note that
�x � �x�x� �������

In a similar fashion we can de�ne the corresponding operators in y�
In the following table we collected some of the common approximations for the �rst

derivative�

Finite Di
erence Order �see next chapter�

�

hx
�xfi j O�hx�

�

hx
rxfi j O�hx�

�

�hx
�xfi j O�h�x�

�

�hx
��	fi j � �fi	� j � fi	� j� �

�

hx
��x � �

�
��

x�fi j O�h�x�

�

�hx
�	fi j � �fi�� j � fi�� j� �

�

hx
�rx �

�

�
r�

x�fi j O�h�x�

�

hx
��x�x � �

	#
�x�



x�fi j O�h
x�

�

�hx

�xfi j
� � �

�
��x

O�h�x�

Table �� Order of approximations to fx

The compact fourth order three point scheme deserves some explanation� Let fx be v�
then the method is to be interpreted as

�� �
�

�
��x�vi j �

�

�hx
�xfi j �������

or
�

�
�vi	� j � �vi j � vi�� j� �

�

�hx
�xfi j � �������

���



This is an implicit formula for the derivative
�f

�x
at �xi� yj�� The vi j can be computed from

the fi j by solving a tridiagonal system of algebraic equations�
The most common second derivative approximations are

fxxji j � �

h�x
�fi j � �fi	� j � fi	� j� �O�hx� �������

fxxji j � �

h�x
�fi j � �fi�� j � fi�� j� �O�hx� ��������

fxxji j � �

h�x
��xfi j �O�h�x� ��������

fxxji j � �

h�x

��xfi j
� � �

��
��x

�O�h�x� ��������

Remarks�
�� The order of a scheme is given for a uniform mesh�
�� Tables for di
erence approximations using more than three points and approximations

of mixed derivatives are given in Anderson� Tannehill and Pletcher ����� � p��
��
	� We will use the notation

%��x �
��x
h�x
� ������	�

The centered di
erence operator can be written as a product of the forward and backward
operator� i�e�

��xfi j � rx�xfi j� ��������

This is true since on the right we have

rx �fi	� j � fi j� � fi	� j � fi j � �fi j � fi�� j�

which agrees with the right hand side of ��������� This idea is important when one wants
to approximate �p�x�y��x��� at the point xi to a second order� In this case one takes the
forward di
erence inside and the backward di
erence outside �or vice versa�

rx

	
pi
yi	� � yi

�x



������
�

and after expanding again

pi
yi	� � yi

�x
� pi��

yi � yi��
�x

�x
��������

or
piyi	� � �pi � pi��� yi � pi��yi��

��x��
� ��������

Note that if p�x� � � then we get the well known centered di
erence�

���



Problems

�� Verify that
�
u

�x

ji
j �

�

xui
j

��x�

�O��x��

�� Consider the function f�x� � ex� Using a mesh increment �x � ���� determine f ��x� at
x � � with forward�di
erence formula� the central�di
erence formula� and the second order
three�point formula� Compare the results with the exact value� Repeat the comparison for
�x � ���� Have the order estimates for truncation errors been a reliable guide� Discuss this
point�

	� Develop a �nite di
erence approximation with T�E� of O��y� for ��u��y� at point �i� j�
using ui
j� ui
j	�� ui
j�� when the grid spacing is not uniform� Use the Taylor series method�
Can you devise a three point scheme with second�order accuracy with unequal spacing�
Before you draw your �nal conclusions� consider the use of compact implicit representations�

�� Establish the T�E� for the following �nite di
erence approximation to �u��y at the point
�i� j� for a uniform mesh�

�u

�y
� �	ui
j � �ui
j	� � ui
j	�

��y
�

What is the order�

���
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Figure ��� Irregular mesh near curved boundary

��� Irregular Mesh

Clearly it is more convenient to use a uniform mesh and it is more accurate in some cases�
However� in many cases this is not possible due to boundaries which do not coincide with the
mesh or due to the need to re�ne the mesh in part of the domain to maintain the accuracy�
In the latter case one is advised to use a coordinate transformation�

In the former case several possible cures are given in� e�g� Anderson et al ������� The
most accurate of these is a development of a �nite di
erence approximation which is valid
even when the mesh is nonuniform� It can be shown that

uxx






O

	� �

�� � ��hx

	
uc � uO
�hx

� uO � uA
hx



���	���

Similar formula for uyy� Note that for � � � one obtains the centered di
erence approx�
imation�

We now develop a three point second order approximation for
�f

�x
on a nonuniform mesh�

�f

�x
at point O can be written as a linear combination of values of f at A�O� and B�

�f

�x






O
� C�f�A� � C�f�O� � C
f�B� � ���	���

A

+
∆ x O

+
α ∆ x B

+ x

Figure 
�� Nonuniform mesh

We use Taylor series to expand f�A� and f�B� about the point O�

f�A� � f�O ��x� � f�O���xf ��O� �
�x�

�
f ���O�� �x


�
f ����O�� � � � ���	�	�

���



f�B� � f�O � ��x� � f�O� � ��xf ��O� �
���x�

�
f ���O� �

�
�x


�
f ����O� � � � � ���	���

Thus

�f

�x






O
� �C� � C� � C
�f�O� � ��C
 � C���x

�f

�x






O
� �C� � ��C
�

�x�

�

��f

�x�






O

� ��
C
 � C��
�x


�

�
f

�x







O
� � � �

���	�
�

This yields the following system of equations

C� � C� � C
 � � ���	���

�C� � �C
 �
�

�x
���	���

C� � ��C
 � � ���	���

The solution is

C� � � �

�� � ���x
� C� �

�� �

��x
� C
 �

�

���� ���x
���	���

and thus
�f

�x
�
���f�A� � ��� � ��f�O� � f�B�

��� � ���x
�
�

�
�x�

�
f

�x







O
� � � � ���	����

Note that if the grid is uniform then � � � and this becomes the familiar centered di
erence�

���



Problems

�� Develop a �nite di
erence approximation with T�E� of O��y�� for �T��y at point �i� j�
using Ti
j� Ti
j	�� Ti
j	� when the grid spacing is not uniform�

�� Determine the T�E� of the following �nite di
erence approximation for �u��x at point
�i� j� when the grid space is not uniform�

�u

�x
ji
j �

ui	�
j � ��x	��x���ui��
j � ��� ��x	��x���� ui
j
�x���x	��x��� ��x	

��	



��� Thomas Algorithm

This is an algorithm to solve a tridiagonal system of equations

�
BBB�

d� a�
b� d� a�

b
 d
 a

� � �

�
CCCA u �

�
BBB�

c�
c�
c

� � �

�
CCCA �������

The �rst step of Thomas algorithm is to bring the tridiagonal M by M matrix to an upper
triangular form

di � di � bi
di��

ai��� i � �� 	� � � � �M �������

ci � ci � bi
di��

ci��� i � �� 	� � � � �M� �����	�

The second step is to backsolve

uM �
cM
dM

�������

uj �
cj � aj uj	�

dj
� j � M � �� � � � � �� �����
�

The following subroutine solves a tridiagonal system of equations�

subroutine tridg�il�iu�rl�d�ru�r�

c

c solve a tridiagonal system

c the rhs vector is destroyed and gives the solution

c the diagonal vector is destroyed

c

integer il�iu

real rl����d����ru����r���

C

C the equations are

C rl�i��u�i����d�i��u�i��ru�i��u�i����r�i�

C il subscript of first equation

C iu subscript of last equation

C

ilp�il��

do � i�ilp�iu

g�rl�i�	d�i���

d�i��d�i��g�ru�i���

r�i��r�i��g�r�i���

� continue

c

���



c Back substitution

c

r�iu��r�iu�	d�iu�

do 
 i�ilp�iu

j�iu�i�il

r�j���r�j��ru�j��r�j����	d�j�


 continue

return

end

��� Methods for Approximating PDEs

In this section we discuss several methods to approximate PDEs� These are certainly not all
the possibilities�

	���� Undetermined coe�cients

In this case� we approximate the required partial derivative by a linear combination of
function values� The weights are chosen so that the approximation is of the appropriate
order� For example� we can approximate uxx at xi� yj by taking the three neighboring
points�

uxxji j � Aui	� j � Bui j � Cui�� j ���
�����

Now expand each of the terms on the right in Taylor series and compare coe�cients �all
terms are evaluated at i j�

uxx � A

�
u� hux �

h�

�
uxx �

h


�
uxxx �

h�

��
uxxxx � � � �

�

�Bu � C

�
u� hux �

h�

�
uxx � h


�
uxxx �

h�

��
uxxxx � � � �

� ���
�����

Upon collecting coe�cients� we have

A �B � C � � ���
���	�

A� C � � ���
�����

�A� C�
h�

�
� � ���
���
�

This yields

A � C �
�

h�
���
�����

B �
��
h�

���
�����

��




The error term� is the next nonzero term� which is

�A� C�
h�

��
uxxxx �

h�

��
uxxxx� ���
�����

We call the method second order� because of the h� factor in the error term� This is the
centered di
erence approximation given by ���������

	���� Polynomial Fitting

We demonstrate the use of polynomial �tting on Laplace�s equation�

uxx � uyy � � ���
�����

The solution can be approximated locally by a polynomial� say

u�x� y�� � a � bx � cx�� ���
�����

Suppose we take x � � at �xi� yj�� then

�u

�x
� b ���
���	�

��u

�x�
� �c� ���
�����

To �nd a� b� c in terms of grid values we have to assume which points to use� Clearly

ui j � a� ���
���
�

Suppose we use the points i� � j and i� � j �i�e� centered di
erencing� then

ui	� j � a� b�x � c��x�� ���
�����

ui�� j � a� b�x � c��x�� ���
�����

Subtracting these two equations� we get

b �
ui	� j � ui�� j

��x
���
�����

and substituting a and b in the equation for ui	� j� we get

�c �
ui	� j � �ui j � ui�� j

��x��
���
�����

but we found earlier that �c is uxx� this gives the centered di
erence approximation for uxx�
Similarly for uyy� now taking a quadratic polynomial in y�

���



	���� Integral Method

The strategy here is to develop an algebraic relationship among the values of the unknowns at
neighboring grid points� by integrating the PDE� We demonstrate this on the heat equation
integrated around the point �xj� tn�� The solution at this point can be related to neighboring
values by integration� e�g�

Z xj	�x��

xj��x��

�Z tn	�t

tn
ut dt

�
dx � �

Z tn	�t

tn

�Z xj	�x��

xj��x��
uxx dx

�
dt� ���
�	���

Note the order of integration on both sides�

Z xj	�x��

xj��x��
�u�x� tn ��t�� u�x� tn� � dx � �

Z tn	�t

tn
�ux�xj ��x��� t�� ux�xj ��x��� t�� dt�

���
�	���
Now use the mean value theorem� choosing xj as the intermediate point on the left and
tn ��t as the intermediate point on the right�

�u�xj� tn ��t�� u�xj� tn� � �x � � �ux�xj ��x��� tn ��t�� ux�xj ��x��� tn ��t�� �t�
���
�	�	�

Now use a centered di
erence approximation for the ux terms and we get the fully implicit
scheme� i�e�

un	�
j � unj
�t

� �
un	�
j	� � �un	�

j � un	�
j��

��x��
� ���
�	���

��� Eigenpairs of a Certain Tridiagonal Matrix

Let A be an M by M tridiagonal matrix whose elements on the diagonal are all a� on the
superdiagonal are all b and on the subdiagonal are all c�

A �

�
BBBBBB�

a b
c a b

c a b

c a

�
CCCCCCA �������

Let 
 be an eigenvalue of A with an eigenvector v� whose components are vi� Then the
eigenvalue equation

Av � 
v �������

can be written as follows

�a� 
�v� � bv� � �

cv� � �a� 
�v� � bv
 � �

���



� � �

cvj�� � �a� 
�vj � bvj	� � �

� � �

cvM�� � �a� 
�vM � ��

If we let v� � � and vM	� � �� then all the equations can be written as

cvj�� � �a� 
�vj � bvj	� � �� j � �� �� � � � �M� �����	�

The solution of such second order di
erence equation is

vj � Bmj
� � Cmj

� �������

where m� and m� are the solutions of the characteristic equation

c� �a� 
�m� bm� � �� �����
�

It can be shown that the roots are distinct �otherwise vj � �B � Cj�mj
� and the boundary

conditions forces B � C � ��� Using the boundary conditions� we have

B � C � � �������

and
BmM	�

� � CmM	�
� � �� �������

Hence 	
m�

m�


M	�

� � � e�s�i� s � �� �� � � � �M� �������

Therefore
m�

m�

� e�s�i��M	��� �������

From the characteristic equation� we have

m�m� �
c

b
� ��������

eliminating m� leads to

m� �

r
c

b
es�i��M	��� ��������

Similarly for m��

m� �

r
c

b
e�s�i��M	��� ��������

Again from the characteristic equation

m� �m� � �
� a��b� ������	�

giving


 � a� b

r
c

b

�
es�i��M	�� � e�s�i��M	��

�
� ��������

���



Hence the M eigenvalues are


s � a� �b

r
c

b
cos

s�

M � �
� s � �� �� � � � �M� ������
�

The jth component of the eigenvector is

vj � Bmj
� � Cmj

� � B
	
c

b


j�� �
ejs�i��M	�� � e�js�i��M	��

�
� ��������

that is

vj � �iB
	
c

b


j��
sin

js�

M � �
� ��������

Use centered di
erence to approximate the second derivative in X ���
X � � to estimate
the eigenvalues assuming X��� � X��� � ��

���



� Finite Di�erences

��� Introduction

In previous chapters we introduced several methods to solve linear �rst and second order
PDEs and quasilinear �rst order hyperbolic equations� There are many problems we cannot
solve by those analytic methods� Such problems include quasilinear or nonlinear PDEs which
are not hyperbolic� We should remark here that the method of characteristics can be applied
to nonlinear hyperbolic PDEs� Even some linear PDEs� we cannot solve analytically� For
example� Laplace�s equation

uxx � uyy � � �������

inside a rectangular domain with a hole �see �gure 
��

x

y

Figure 
�� Rectangular domain with a hole

x

y

L

H

Figure 
�� Polygonal domain

or a rectangular domain with one of the corners clipped o
�
For such problems� we must use numerical methods� There are several possibilities� but

here we only discuss �nite di
erence schemes�
One of the �rst steps in using �nite di
erence methods is to replace the continuous

problem domain by a di
erence mesh or a grid� Let f�x� be a function of the single inde�
pendent variable x for a � x � b� The interval �a� b� is discretized by considering the nodes
a � x� � x� � � � � � xN � xN	� � b� and we denote f�xi� by fi� The mesh size is xi	� � xi

���



and we shall assume for simplicity that the mesh size is a constant

h �
b� a

N � �
�������

and
xi � a� ih i � �� �� � � � � N � � �����	�

In the two dimensional case� the function f�x� y� may be speci�ed at nodal point �xi� yj�
by fij� The spacing in the x direction is hx and in the y direction is hy�

��� Di
erence Representations of PDEs

I� Truncation error
The di
erence approximations for the derivatives can be expanded in Taylor series� The

truncation error is the di
erence between the partial derivative and its �nite di
erence rep�
resentation� For example

fx






ij
� �

hx
�xfij � fx






ij
� fi	�j � fij

hx
�������

� �fxx





ij

hx
�#
� � � � �������

We use O�hx� which means that the truncation error satis�es jT� E�j � Kjhxj for hx � ��
su�ciently small� where K is a positive real constant� Note that O�hx� does not tell us the
exact size of the truncation error� If another approximation has a truncation error of O�h�x��
we might expect that this would be smaller only if the mesh is su�ciently �ne�

We de�ne the order of a method as the lowest power of the mesh size in the truncation
error� Thus Table � �Chapter �� gives �rst through fourth order approximations of the �rst
derivative of f �

The truncation error for a �nite di
erence approximation of a given PDE is de�ned as
the di
erence between the two� For example� if we approximate the advection equation

�F

�t
� c

�F

�x
� � � c � � �����	�

by centered di
erences
Fij	� � Fij��

��t
� c

Fi	�j � Fi��j
��x

� � �������

then the truncation error is

T� E� �

�
�F

�t
� c

�F

�x

�
ij

� Fij	� � Fij��
��t

� c
Fi	�j � Fi��j

��x
�����
�

� ��

�
�t�

�
F

�t

� c

�

�
�x�

�
F

�x

� higher powers of �t and �x�

���



We will write
T�E� � O��t���x�� �������

In the case of the simple explicit method

un	�
j � unj
�t

� k
unj	� � �unj � unj��

��x��
�������

for the heat equation
ut � kuxx �������

one can show that the truncation error is

T�E� � O��t��x�� �������

since the terms in the �nite di
erence approximation ������� can be expanded in Taylor series
to get

ut � kuxx � utt
�t

�
� kuxxxx

��x��

��
� � � �

All the terms are evaluated at xj� tn� Note that the �rst two terms are the PDE and all other
terms are the truncation error� Of those� the ones with the lowest order in �t and �x are
called the leading terms of the truncation error�

Remark� See lab	 �	��	taylor�ms� for the use of Maple to get the truncation error�

II� Consistency
A di
erence equation is said to be consistent or compatible with the partial di
erential

equation when it approaches the latter as the mesh sizes approaches zero� This is equivalent
to

T�E�� � as mesh sizes � � �

This seems obviously true� One can mention an example of an inconsistent method �see e�g�
Smith ����
��� The DuFort�Frankel scheme for the heat equation ������� is given by

un	�
j � un��j

��t
� k

unj	� � un	�
j � un��j � unj��

�x�
� ��������

The truncation error is

k

��

��u

�x�





n
j
�x� � ��u

�t�





n
j

	
�t

�x


�

� �

�

�
u

�t






n
j
��t�� � � � � ��������

If �t��x approach zero at the same rate such that
�t

�x
� constant � �� then the method is

inconsistent �we get the PDE
ut � ��utt � kuxx

instead of ���������

���



III� Stability
A numerical scheme is called stable if errors from any source �e�g� truncation� round�o
�

errors in measurements� are not permitted to grow as the calculation proceeds� One can
show that DuFort�Frankel scheme is unconditionally stable� Richtmeyer and Morton give a
less stringent de�nition of stability� A scheme is stable if its solution remains a uniformly
bounded function of the initial state for all su�ciently small �t�

The problem of stability is very important in numerical analysis� There are two methods
for checking the stability of linear di
erence equations� The �rst one is referred to as Fourier
or von Neumann assumes the boundary conditions are periodic� The second one is called
the matrix method and takes care of contributions to the error from the boundary�

von Neumann analysis
Suppose we solve the heat equation ������� by the simple explicit method �������� If a term
�a single term of Fourier and thus the linearity assumption�

�nj � eatneikmxj ��������

is substituted into the di
erence equation� one obtains after dividing through by eatneikmxj

ea�t � � � �r �cos � � �� � �� �r sin�
�

�
������	�

where

r � k
�t

��x��
��������

� � km�x � km �
��m

�L
�m � �� � � � �M� ������
�

where M is the number of �x units contained in L� The stability requirement is

jea�tj � � ��������

implies

r � �

�
� ��������

The term jea�tj also denoted G is called the ampli�cation factor� The simple explicit method
is called conditionally stable� since we had to satisfy the condition �������� for stability�

One can show that the simple implicit method for the same equation is unconditionally
stable� Of course the price in this case is the need to solve a system of equations at every
time step� The following method is an example of an unconditionally unstable method�

un	�
j � un��j

��t
� k

unj	� � �unj � unj��
�x�

� ��������

This method is second order in time and space but useless� The DuFort Frankel is a way to
stabilize this second order in time scheme�

IV� Convergence

��	



A scheme is called convergent if the solution to the �nite di
erence equation approaches
the exact solution to the PDE with the same initial and boundary conditions as the mesh
sizes apporach zero� Lax has proved that under appropriate conditions a consistent scheme
is convergent if and only if it is stable�

Lax equivalence theorem
Given a properly posed linear initial value problem and a �nite di
erence approximation

to it that satis�es the consistency condition� stability �a�la Richtmeyer and Morton �������
is the necessary and su�cient condition for convergence�

V� Modi�ed Equation
The importance of the modi�ed equation is in helping to analyze the numerical e
ects of

the discretization� The way to obtain the modi�ed equation is by starting with the truncation
error and replacing the time derivatives by spatial di
erentiation using the equation obtained
from truncation error� It is easier to discuss the details on an example� For the heat equation

ut � kuxx � �

we have the following explicit method

un	�
j � unj
�t

� k
unj	� � �unj � unj��

��x��
� �� ��������

The truncation error is �all terms are given at tn� xj�

ut � kuxx � ��t

�
utt �

��x��

��
kuxxxx � � � � ��������

This is the equation we have to use to eliminate the time derivatives� After several di
eren�
tiations and substitutions� we get

ut�kuxx �

�
��

�
k��t � k

��x��

��

�
uxxxx�

�
�

	
k
 ��t�� � �

��
k��t ��x�� �

�

	��
k ��x��

�
uxxxxxx�� � �

It is easier to organize the work in a tabular form� We will show that later when discussing

�rst order hyperbolic�

Note that for r �
�

�
� the truncation error is O��t���x��� The problem is that one has

to do 	 times the number of steps required by the limit of stability� r �
�

�
�

Note also there are NO odd derivative terms� that is no dispersive error �dispersion
means that phase relation between various waves are distorted� or the same as saying that
the ampli�cation factor has no imaginary part��

Note that the exact ampli�cation can be obtained as the quotient

Gexact �
u�t��t� x�

u�t� x�
� e�r�

�

��������

See �gure 
	 for a plot of the ampli�cation factor G versus ��

���



exact r=1/2   

explicit r=1/2

exact r=1/6   

explicit r=1/6
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Figure 
	� Ampli�cation factor for simple explicit method

Problems

�� Utilize Taylor series expansions about the point �n �
�

�
� j� to determine the T�E� of the

Crank Nicolson representation of the heat equation� Compare these results with the T�E�
obtained from Taylor series expansion about the point �n� j��

�� The DuFort Frankel method for solving the heat equation requires solution of the di
er�
ence equation

un	�
j � un��j

��t
�

�

��x��

�
unj	� � un	�

j � un��j � unj��
�

Develop the stability requirements necessary for the solution of this equation�

��




��� Heat Equation in One Dimension

In this section we apply �nite di
erences to obtain an approximate solution of the heat
equation in one dimension�

ut � kuxx� � � x � �� t � �� ���	���

subject to the initial and boundary conditions

u�x� �� � f�x�� ���	���

u��� t� � u��� t� � �� ���	�	�

Using forward approximation for ut and centered di
erences for uxx we have

un	�
j � unj � k

�t

��x��
�unj�� � �unj � unj	��� j � �� �� � � � � N � �� n � �� �� � � � ���	���

where unj is the approximation to u�xj� tn�� the nodes xj� tn are given by

xj � j�x� j � �� �� � � � � N ���	�
�

tn � n�t� n � �� �� � � � ���	���

and the mesh spacing

�x �
�

N
� ���	���

see �gure 
��

t

x

Figure 
�� Uniform mesh for the heat equation

The solution at the points marked by � is given by the initial condition

u�j � u�xj� �� � f�xj�� j � �� �� � � � � N ���	���

���



and the solution at the points marked by � is given by the boundary conditions

u��� tn� � u�xN � tn� � ��

or
un� � unN � �� ���	���

The solution at other grid points can be obtained from ���	���

un	�
j � runj�� � ��� �r�unj � runj	�� ���	����

where r is given by ��������� The implementation of ���	���� is easy� The value at any grid
point requires the knowledge of the solution at the three points below� We describe this by
the following computational molecule ��gure 

��

j−1 , n j , n j+1 , n

j , n+1

Figure 

� Computational molecule for explicit solver

We can compute the solution at the leftmost grid point on the horizontal line representing
t� and continue to the right� Then we can advance to the next horizontal line representing
t� and so on� Such a scheme is called explicit�

The time step �t must be chosen in such a way that stability is satis�ed� that is

�t � k

�
��x�� � ���	����

We will see in the next sections how to overcome the stability restriction and how to obtain
higher order method�

Can do Lab 


���



Problems

�� Use the simple explicit method to solve the ��D heat equation on the computational grid
��gure 
�� with the boundary conditions

un� � � � un


and initial conditions
u�� � � � u�
� u�� � ��

Show that if r � �
�
� the steady state value of u along j � � becomes

usteadystate� � lim
n��

nX
k��

�

�k��

Note that this in�nite series is geometric that has a known sum�

x

t

j=1 2 3

n=1

2

3

4

Figure 
�� domain for problem � section ��	

���



����� Implicit method

One of the ways to overcome this restriction is to use an implicit method

un	�
j �unj � k

�t

��x��
�un	�

j����un	�
j �un	�

j	� �� j � �� �� � � � � N��� n � �� �� � � � ���	�����

The computational molecule is given in �gure 
�� The method is unconditionally stable�
since the ampli�cation factor is given by

G �
�

� � �r��� cos ��
���	�����

which is � � for any r� The price for this is having to solve a tridiagonal system for each
time step� The method is still �rst order in time� See �gure 
� for a plot of G for explicit
and implicit methods�

j , n

j , n+1j−1 , n+1 j+1 , n+1

Figure 
�� Computational molecule for implicit solver

����� DuFort Frankel method

If one tries to use centered di
erence in time and space� one gets an unconditionally unstable
method as we mentioned earlier� Thus to get a stable method of second order in time� DuFort
Frankel came up with�

un	�
j � un��j

��t
� k

unj	� � un	�
j � un��j � unj��

�x�
���	�����

We have seen earlier that the method is explicit with a truncation error

T�E� � O

�
�t�� �x��

	
�t

�x


�
�
� ���	�����

The modi�ed equation is

���



exact r=1/2    

implicit       

Crank Nicholson

DuFort Frankel 
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Figure 
�� Ampli�cation factor for several methods

ut � kuxx �

�
�

��
k�x� � k


�t�

�x�

�
uxxxx

�

�
�

	��
k�x� � �

	
k
�t� � �k�

�t�

�x�

�
uxxxxxx � � � �

���	���	�

The ampli�cation factor is given by

G �
�r cos � �

q
�� �r� sin� �

� � �r
���	�����

and thus the method is unconditionally stable�
The only drawback is the requirement of an additional starting line�

����� Crank�Nicolson method

Another way to overcome this stability restriction� we can use Crank�Nicolson implicit
scheme

�run	�
j�� � ��� � r�un	�

j � run	�
j	� � runj�� � ���� r�unj � runj	�� ���	�	���

This is obtained by centered di
erencing in time about the point xj� tn	���� On the right we
average the centered di
erences in space at time tn and tn	�� The computational molecule
is now given in the next �gure �
���

The method is unconditionally stable� since the denominator is always larger than nu�
merator in

G �
�� r��� cos ��

� � r��� cos ��
� ���	�	���

���



j−1 , n j , n j+1 , n

j , n+1j−1 , n+1 j+1 , n+1

Figure 
�� Computational molecule for Crank Nicolson solver

It is second order in time �centered di
erence about xj� tn	���� and space� The modi�ed
equation is

ut � kuxx �
k�x�

��
uxxxx �

�
�

��
k
�t� �

�

	��
k�x�

�
uxxxxxx � � � � ���	�	�	�

The disadvantage of the implicit scheme �or the price we pay to overcome the stability
barrier� is that we require a solution of system of equations at each time step� The number
of equations is N � ��

We include in the appendix a Fortran code for the solution of ���	�������	�	� using the
explicit and implicit solvers� We must say that one can construct many other explicit or
implicit solvers� We allow for the more general boundary conditions

ALux �BLu � CL� on the left boundary ���	�	���

ARux �BRu � CR� on the right boundary� ���	�	�
�

Remark� For a more general boundary conditions� see for example Smith ����
�� we need to
�nite di
erence the derivative in the boundary conditions�

����� Theta ��� method

All the method discussed above �except DuFort Frankel� can be written as

un	�
j � unj
�t

� k
��un	�

j	� � �un	�
j � un	�

j�� � � ��� ���unj	� � �unj � unj���

�x�
���	�����

For � � � we get the explicit method ���	����� for � � �� we get the implicit method

���	����� and for � �
�

�
we have Crank Nicolson ���	�	����

The truncation error is
O
�
�t� �x�

�

���



except for Crank Nicolson as we have seen earlier �see also the modi�ed equation below�� If

one chooses � �
�

�
� �x�

��k�t
�the coe�cient of uxxxx vanishes�� then we get O

�
�t�� �x�

�
�

and if we choose the same � with
�x�

k�t
�
p
�� �the coe�cient of uxxxxxx vanishes�� then

O
�
�t�� �x�

�
�

The method is conditionally stable for � � � �
�

�
with the condition

r � �

�� ��
���	�����

and unconditionally stable for
�

�
� � � ��

The modi�ed equation is

ut � kuxx �
	
�

��
k�x� � �� � �

�
�k��t



uxxxx

�
�
��� � � �

�

	
�k
�t� �

�

�
�� � �

�
�k��t�x� �

�

	��
k�x�

�
uxxxxxx � � � �

���	���	�

����� An example

We have used the explicit solver program to approximate the solution of

ut � uxx� � � x � �� t � � ���	�
���

u�x� �� �

����
���

�x � � x �
�

�

���� x�
�

�
� x � �

���	�
���

u��� t� � u��� t� � �� ���	�
�	�

using a variety of values of r� The results are summarized in the following �gures�
The analytic solution �using separation of variables� is given by

u�x� t� �
�X
n��

ane
��n���t sinn�x� ���	�
���

where an are the Fourier coe�cients for the expansion of the initial condition ���	�
����

an �
�

�n���
sin

n�

�
� n � �� �� � � � ���	�
�
�

The analytic solution ���	�
��� and the numerical solution �using �x � ��� r � �
� at times
t � ���
 and t � �
 are given in the two �gures ��� ��� It is clear that the error increases in
time but still smaller than �

 �����

���
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initial solution and at time=0.025

Figure ��� Numerical and analytic solution with r � �
 at t � ���


0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6
x 10

−3 solution at time=0.5

Figure ��� Numerical and analytic solution with r � �
 at t � �


On the other hand� if r � �
�� we see oscillations at time t � ���

 ��gure ��� which
become very large at time t � ��

 ��gure �	� and the temperature becomes negative at
t � ��
� ��gure ����

Clearly the solution does not converge when r � �
�
The implicit solver program was used to approximate the solution of ���	�
��� subject to

u�x� �� � ���� ��jx� ��j ���	�
���

and
ux��� t� � ���u��� t�� �
�� ���	�
���

u��� t� � ���� ���	�
���

Notice that the boundary and initial conditions do not agree at the right boundary� Because
of the type of boundary condition at x � �� we cannot give the eigenvalues explicitly� Notice

��	
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Figure ��� Numerical and analytic solution with r � �
� at t � ���



that the problem is also having inhomogeneous boundary conditions� To be able to compare
the implicit and explicit solvers� we have used Crank�Nicolson to solve ���	�
�������	�
�	��
We plot the analytic and numerical solution with r � � at time t � �
 to show that the
method is stable �compare the following �gure �
 to the previous one with r � �
���

���
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Figure �	� Numerical and analytic solution with r � �
� at t � ��
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����� Unbounded Region � Coordinate Transformation

Suppose we have to solve a problem on unbounded domain� e�g�

ut � uxx� � � x �� ���	�����

subject to
u�x� �� � g�x� ���	�����

u��� t� � f�t�� ���	���	�

There is no di�culty with the unbounded domain if we use one sided approximation for uxx�
i�e�

uxx �
uni � �uni�� � uni��

h�
���	�����

which is �rst order accurate� If one decides to use second order centered di
erences then an
unclosed set of equations are obtained �always need a point to the right�� The most obvious
way to overcome this is to impose a boundary condition at an arti�cial boundary x � L�
such as

u�L� t� � �� ���	���
�

Another way is to transform the domain to a �nite interval� say ��� �� by using one of these
transformations�

z � �� e�x�L� ���	�����

or
z �

x

x� L
� ���	�����

for some scale factor L� This� of course� will a
ect the equation�

��� Two Dimensional Heat Equation

In this section� we generalize the solution of the heat equation obtained in section ��	 to two
dimensions� The problem of heat conduction in a rectangular membrane is described by

ut � ��uxx � uyy�� � � x � L� � � y � H� t � � �������

subject to
u�x� y� t� � g�x� y� t�� on the boundary �������

u�x� y� �� � f�x� y�� � � x � L� � � y � H� �����	�

���



����� Explicit

To obtain an explicit scheme� we use forward di
erence in time and centered di
erences in
space� Thus

un	�
ij � unij

�t
� ��

uni��j � �unij � uni	�j

��x��
�
unij�� � �unij � unij	�

��y��
� ���������

or
un	�
ij � rxu

n
i��j � ��� �rx � �ry�u

n
ij � rxu

n
i	�j � ryu

n
ij�� � ryu

n
ij	�� ���������

where unij is the approximation to u�xi� yj� tn� and

rx � �
�t

��x��
� �������	�

ry � �
�t

��y��
� ���������

The stability condition imposes a limit on the time step

��t

�
�

�x�
�

�

�y�

�
� �

�
�������
�

For the case �x � �y � d� we have

�t � �

��
d� ���������

which is more restrictive than in the one dimensional case� The solution at any point
�xi� yj� tn� requires the knowledge of the solution at all 
 points at the previous time step
�see next �gure ����

i−1 , j , n i , j , n i+1 , j , n

i , j+1 , n 

i , j−1, n

i , j , n+1

Figure ��� Computational molecule for the explicit solver for �D heat equation

Since the solution is known at t � �� we can compute the solution at t � �t one point
at a time�

To overcome the stability restriction� we can use Crank�Nicolson implicit scheme� The
matrix in this case will be banded of higher dimension and wider band� There are other
implicit schemes requiring solution of smaller size systems� such as alternating direction� In
the next section we will discuss Crank Nicolson and ADI �Alternating Direction Implicit��

���



����� Crank Nicolson

One way to overcome this stability restriction is to use Crank�Nicolson implicit scheme

un	�
ij � unij

�t
� �

��xu
n
ij � ��xu

n	�
ij

���x��
� �

��yu
n
ij � ��yu

n	�
ij

���y��
���������

The method is unconditionally stable� It is second order in time �centered di
erence
about xi� yj� tn	���� and space�

It is important to order the two subscript in one dimensional index in the right direction
�if the number of grid point in x and y is not identical�� otherwise the bandwidth will increase�

Note that the coe�cients of the banded matrix are independent of time �if � is not a
function of t�� and thus one have to factor the matrix only once�

����� Alternating Direction Implicit

The idea here is to alternate direction and thus solve two one�dimensional problem at each
time step� The �rst step to keep y �xed

un	���
ij � unij
�t��

� �
�
%��xu

n	���
ij � %��yu

n
ij

�
�����	���

In the second step we keep x �xed

un	�
ij � u

n	���
ij

�t��
� �

�
%��xu

n	���
ij � %��yu

n	�
ij

�
�����	���

So we have a tridiagonal system at every step� We have to order the unknown di
erently
at every step�

The method is second order in time and space and it is unconditionally stable� since the
denominator is always larger than numerator in

G �
�� rx��� cos �x�

� � rx��� cos �x�

�� ry��� cos �y�

� � ry��� cos �y�
� �����	�	�

The obvious extension to three dimensions is only �rst order in time and conditionally
stable� Douglas & Gunn developed a general scheme called approximate factorization to
ensure second order and unconditional stability�

Let
�uij � un	�

ij � unij �����	���

Substitute this into the two dimensional Crank Nicolson

�uij �
��t

�

n
%��x�uij �

%��y�uij � �%��xu
n
ij � �%��yu

n
ij

o
�����	�
�

Now rearrange� 	
�� rx

�
��x �

ry
�
��y



�uij �

�
rx�

�
x � ry�

�
y

�
unij �����	���

���



The left hand side operator can be factored

�� rx
�
��x �

ry
�
��y �

	
�� rx

�
��x


	
�� ry

�
��y



� rxry

�
��x�

�
y �����	���

The last term can be neglected because it is of higher order� Thus the method for two
dimensions becomes 	

�� rx
�
��x



�u�ij �

�
rx�

�
x � ry�

�
y

�
unij �����	���

	
�� ry

�
��y



�uij � �u�ij �����	���

un	�
ij � unij ��uij �����	����

���



Problems

�� Apply the ADI scheme to the ��D heat equation and �nd un	� at the internal grid points
in the mesh shown in �gure �� for rx � ry � �� The initial conditions are

un � �� x

	�x
along y � �

un � �� y

��y
along x � �

un � � everywhere else

and the boundary conditions remain �xed at their initial values�

x

y

i=1 2 3 4

j=1

2

3

Figure ��� domain for problem � section �����
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����� Alternating Direction Implicit for Three Dimensional Problems

Here we extend Douglas & Gunn method to three dimensions	
�� rx

�
��x



�u�ijk �

�
rx�

�
x � ry�

�
y � rz�

�
z

�
unijk ���������

	
�� ry

�
��y



�u��ijk � �u�ijk ���������

	
�� rz

�
��z



�uijk � �u��ijk �������	�

un	�
ijk � unijk ��uijk� ���������

��� Laplace�s Equation

In this section� we discuss the approximation of the steady state solution inside a rectangle

uxx � uyy � �� � � x � L� � � y � H� ���
���

subject to Dirichlet boundary conditions

u�x� y� � f�x� y�� on the boundary� ���
���

y

x
L

H

∆ x

∆ y

Figure ��� Uniform grid on a rectangle

We impose a uniform grid on the rectangle with mesh spacing �x� �y in the x� y
directions� respectively� The �nite di
erence approximation is given by

ui��j � �uij � ui	�j

��x��
�
uij�� � �uij � uij	�

��y��
� �� ���
�	�

���



or �
�

��x��
�

�

��y��

�
uij �

ui��j � ui	�j

��x��
�
uij�� � uij	�

��y��
� ���
���

For �x � �y we have
�uij � ui��j � ui	�j � uij�� � uij	�� ���
�
�

The computational molecule is given in the next �gure ����� This scheme is called �ve point
star because of the shape of the molecule�

j−1 , n j , n j+1 , n

j , n+1

j , n−1

Figure ��� Computational molecule for Laplace�s equation

The truncation error is
T�E� � O

�
�x���y�

�
���
���

and the modi�ed equations is

uxx � uyy � � �

��

�
�x�uxxxx ��y�uyyyy

�
� � � � ���
���

Remark� To obtain a higher order method� one can use the nine point star� which is of
sixth order if �x � �y � d� but otherwise it is only second order� The nine point star is
given by

ui	� j	� � ui�� j	� � ui	� j�� � ui�� j�� � �
�x� � 
�y�

�x� ��y�
�ui	� j � ui�� j�

� �

�x� ��y�

�x� ��y�
�ui j	� � ui j���� ��ui j � �

���
���
For three dimensional problem the equivalent to �ve point star is seven point star� It is

given by

ui��jk � �uijk � ui	�jk

��x��
�
uij��k � �uijk � uij	�k

��y��
�
uijk�� � �uijk � uijk	�

��z��
� �� ���
���

The solution is obtained by solving the linear system of equations

Au � b� ���
����

��	



where the block banded matrix A is given by

A �

�
�������

T B � � � � �
B T B
� B T B
� � �
� � � � � B T

�
������� ���
����

and the matrices B and T are given by

B � �I ���
����

T �

�
�������

� �� � � � � �
�� � ��
� �� � �� �
� � �
� � � � � �� �

�
������� ���
��	�

and the right hand side b contains boundary values� If we have Poisson�s equation then b
will also contain the values of the right hand side of the equation evaluated at the center
point of the molecule�

One can use Thomas algorithm for block tridiagonal matrices� The system could also
be solved by an iterative method such as Jacobi� Gauss�Seidel or successive over relaxation
�SOR�� Such solvers can be found in many numerical analysis texts� In the next section� we
give a little information on each�

Remarks�
�� The solution is obtained in one step since there is no time dependence�
�� One can use ELLPACK �ELLiptic PACKage� a research tool for the study of numerical

methods for solving elliptic problems� see Rice and Boisvert ������� to solve any elliptic
PDEs�

����� Iterative solution

The idea is to start with an initial guess for the solution and iterate using an easy system
to solve� The sequence of iterates x�i� will converge to the answer under certain conditions
on the iteration matrix� Here we discuss three iterative scheme� Let�s write the coe�cient
matrix A as

A � D � L� U ���
�����

then one can iterate as follows

Dx�i	�� � �L� U�x�i� � b� i � �� �� �� � � � ���
�����

This scheme is called Jacobi�s method� At each time step one has to solve a diagonal
system� The convergence of the iterative procedure depends on the spectral radius of the
iteration matrix

J � D���L � U�� ���
���	�

���



If 
�J� � � then the iterative method converges �the speed depends on how small the spectral
radius is� �spectral radius of a matrix is de�ned later and it relates to the modulus of the
dominant eigenvalue�� If 
�J� 
 � then the iterative method diverges�

Assuming that the new iterate is a better approximation to the answer� one comes up
with Gauss�Seidel method� Here we suggest the use of the component of the new iterate as
soon as they become available� Thus

�D � L�x�i	�� � Lx�i� � b� i � �� �� �� � � � ���
�����

and the iteration matrix G is
G � �D � L���U ���
���
�

We can write Gauss Seidel iterative procedure also in componentwise

x
�i	��
k �

�

akk

�
�bk � k��X

j��

akjx
�i	��
j �

nX
j�k	�

akjx
�i�
j

�
A ���
�����

Can do Lab �

It can be shown that if
jaiij 


X
j ��i
jaijj� for all i

and if for at least one i we have a strict inequality and the system is irreducible �i�e� can�t
break to subsystems to be solved independently� then Gauss Seidel method converges� In
the case of Laplace�s equation� these conditions are met�

The third method we mention here is called successive over relaxation or SOR for short�
The method is based on Gauss�Seidel� but at each iteration we add a step

u
�k	���

ij � u
�k��

ij � �
�
u
�k	��
ij � u

�k��

ij

�
���
�����

For � � � � � the method is really under relaxation� For � � � we have Gauss Seidel and
for � � � � � we have over relaxation� There is no point in taking � 
 �� because the
method will diverge� It can be shown that for Laplace�s equation the best choice for � is

�opt �
�

� �
p
�� ��

���
�����

where

� �
�

� � ��

�
cos

�

p
� �� cos

�

q

�
� ���
�����

� �
�x

�y
� grid aspect ratio ���
������

and p� q are the number of �x��y respectively�

��




��� Vector and Matrix Norms

Norms have the following properties

Let

�x � �y � Rn �x �� �� � � R

�� k �x k � �

�� k��x k � j� j k �x k

	� k �x � �y k � k �x k � k �y k

Let �x �

�
BBBB�

x�
x�
���
xn

�
CCCCA then the �integral norms are�

k �x k� �
nX
i��

j xi j one norm

k �x k� �

vuut nX
i��

x�i two norm �Euclidean norm�

k �x kk �

�
nX
i��

jxijk
���k

k norm

k �x k� � max
�� i�n

j xi j in�nity norm

Example

�x �

�
B� �	

�



�
CA

k �x k� � ��

k �x k� � 

p
� 	 �����

���



k �x k
 � 
��

k �x k� � 
�
��

���
k �x k� � 


Matrix Norms

Let A be an m 
 n non�zero matrix �i�e� A � Rm 
 Rn�� Matrix norms have the
properties

�� kA k 
 �

�� k�A k � j� j kA k

	� kA � B k � kA k � kB k

De�nintion

A matrix norm is consistent with vector norms k � ka on Rn and k � kb on Rm with
A � Rm 
 Rn if

kA�x kb � kA k k �x ka
and for the special case that A is a square matrix

kA�x k � kA k k �x k

De�nintion

Given a vector norm� a corresponding matrix norm for square matrices� called the
subordindate matrix norm is de�ned as

l� u� b�� �z �
least upper bound

�A� � max
�x ����

�kA�x k
k �x k

�

Note that this matrix norm is consistent with the vector norm because

kA�x k � l� u� b� �A� � k �x k
by de�nition� Said another way� the l� u� b� �A� is a measure of the greatest magni�cation a
vector �x can obtain� by the linear transformation A� using the vector norm k � k�

Examples

For k � k� the subordinate matrix norm is

���



l� u� b�� �A� � max
�x ����

kA�x k�
k �x k�

� max
�x ����

�
maxifj Pn

k�� aik xk jg
maxkfj xk jg

�

� max
i
f

nX
k��

j aik j g

where in the last equality� we�ve chosen xk � sign�aik�� The �inf �norm is sometimes
written

kA k� � max
�� i�n

nX
j��

j aij j

where it is readily seen to be the maximum row sum�

In a similar fashion� the �one �norm of a matrix can be found� and is sometimes referred
to as the column norm� since for a given m
 n matrix A it is

kAk� � max
��j�n

fja�jj� ja�jj� � � �� jamjjg

For k � k� we have

l� u� b�� �A� � max
�x ����

kA�x k�
k �x k�

� max
�x ����

s
�xTATA�x

�xT�x
�
q

max �AT A�

�
q

�ATA�

where 
max is the magnitude of the largest eigenvalue of the symmetric matrix ATA� and
where the notation 
�ATA� is referred to as the �spectral radius of ATA� Note that if
A � AT then

l�u�b���A� � kAk� �
q

��A� � 
�A�

The spectral radius of a matrix is smaller than any consistent matrix norm of that matrix�
Therefore� the largest �in magnitude� eigenvalue of a matrix is the least upper bound of all
consistent matrix norms� In mathematical terms�

l� u� b� �kAk� � j
max j � 
�A�

where k � k is any consistent matrix norm�

���



To see this� let �
i � �xi� be an eigenvalue�eigenvector pair of the matrix A� Then we have

A�xi � 
i �xi

Taking consistent matrix norms�

kA�xik � k
i �xik � j
ij k�xik
Because k � k is a consistent matrix norm

kAk k �xik 
 kA�xik � j
ij k�xik
and dividing out the magnitude of the eigenvector �which must be other than zero�� we have

kAk 
 j
i j for all 
i

Example Given the matrix

A �

�
BBBBBB�

��� � 	 � �
� �� � 
 �
	 	 �� �
 ��
� �� � �� �	

 
 �	 �� ��

�
CCCCCCA

we can determine the various norms of the matrix A�

The � norm of A is given by�

kAk� � max
j
fja�
jj� ja�
jj� � � �� ja�
jjg

The matrix A can be seen to have a ��norm of 	� from the 	rd column�

The � norm of A is given by�

kAk� � max
i
fjai
�j� jai
�j� � � �� jai
�jg

and therefore has the � norm of 	� which comes from its 	rd row�

To �nd the �two �norm of A� we need to �nd the eigenvalues of ATA which are�


��	�	�� �
������� ����	�
	� ������
�� and 
�������

Taking the square root of the largest eigenvalue gives us the � norm � kAk� � ������
�

To determine the spectral radius of A� we �nd that A has the eigenvalues�

��������� ������� �������� �	���	�� and �������

Therefore the spectral radius of A� �or 
�A�� is �	���	�� which is in fact less than all other
norms of A �kAk� � 	�� kAk� � ������
� kAk� � 	���

���



Problems

�� Find the one�� two�� and in�nity norms of the following vectors and matrices�

�a�

�
B� � � 	

� 
 �
	 � �

�
CA �b�

�
B� 	

�



�
CA �c�

�
� �
� 	

�

���



��	 Matrix Method for Stability

We demonstrate the matrix method for stability on two methods for solving the one di�
mensional heat equation� Recall that the explicit method can be written in matrix form
as

un	� � Aun � b �������

where the tridiagonal matrix A have ���r on diagonal and r on the super� and sub�diagonal�
The norm of the matrix dictates how fast errors are growing �the vector b doesn�t come into
play�� If we check the in�nity or � norm we get

jjAjj� � jjAjj� � j�� �rj� jrj� jrj �������

For � � r � ���� all numbers inside the absolute values are non negative and we get a norm
of �� For r � ���� the norms are �r � � which is greater than �� Thus we have conditional
stability with the condition � � r � ����

The Crank Nicolson scheme can be written in matrix form as follows

��I � rT �un	� � ��I � rT �un � b �����	�

where the tridiagonal matrix T has �� on diagonal and � on super� and sub�diagonals� The
eigenvalues of T can be expressed analytically� based on results of section ����


s�T � � �� sin� s�

�N
� s � �� �� � � � � N � � �������

Thus the iteration matrix is

A � ��I � rT �����I � rT � �����
�

for which we can express the eigenvalues as


s�A� �
�� �r sin� s�

�N

� � �r sin� s�
�N

�������

All the eigenvalues are bounded by � since the denominator is larger than numerator� Thus
we have unconditional stability�

��� Derivative Boundary Conditions

Derivative boundary conditions appear when a boundary is insulated

�u

�n
� � �������

or when heat is transferred by radiation into the surrounding medium �whose temperature
is v�

�k�u
�n

� H�u� v� �������

���



where H is the coe�cient of surface heat transfer and k is the thermal conductivity of the
material�

Here we show how to approximate these two types of boundary conditions in connection
with the one dimensional heat equation

ut � kuxx� � � x � � �����	�

u��� t� � g�t� �������

�u��� t�

�n
� �h�u��� t�� v� �����
�

u�x� �� � f�x� �������

Clearly one can use backward di
erences to approximate the derivative boundary condition
on the right end �x � ��� but this is of �rst order which will degrade the accuracy in x
everywhere �since the error will propagate to the interior in time�� If we decide to use a
second order approximation� then we have

unN	� � unN��
��x

� �h�unN � v� �������

where xN	� is a �ctitious point outside the interval� i�e� xN	� � � � �x� This will require
another equation to match the number of unknowns� We then apply the �nite di
erence
equation at the boundary� For example� if we are using explicit scheme then we apply the
equation

un	�
j � runj�� � ��� �r�unj � runj	�� �������

for j � �� �� � � � � N � At j � N � we then have

un	�
N � runN�� � ��� �r�unN � runN	�� �������

Substitute the value of unN	� from ������� into ������� and we get

un	�
N � runN�� � ��� �r�unN � r

h
unN�� � �h�x �unN � v�

i
� ��������

This idea can be implemented with any �nite di
erence scheme�
Suggested Problem� Solve Laplace�s equation on a unit square subject to given temper�

ature on right� left and bottom and insulated top boundary� Assume �x � �y � h �
�

�
�

��� Hyperbolic Equations

An important property of hyperbolic PDEs can be deduced from the solution of the wave
equation� As the reader may recall the de�nitions of domain of dependence and domain of
in�uence� the solution at any point �x�� t�� depends only upon the initial data contained in
the interval

x� � ct� � x � x� � ct��

As we will see� this will relate to the so called CFL condition for stability�

���



����� Stability

Consider the �rst order hyperbolic

ut � cux � � ���������

u�x� �� � F �x�� ���������

As we have seen earlier� the characteristic curves are given by

x� ct � constant �������	�

and the general solution is
u�x� t� � F �x� ct�� ���������

Now consider Lax method for the approximation of the PDE

un	�
j � unj	� � unj��

�
� c

�t

�x

�
unj	� � unj��

�

�
� �� �������
�

To check stabilty� we can use either Fourier method or the matrix method� In the �rst case�
we substitute a Fourier mode and �nd that

G � ea�t � cos � � i� sin� ���������

where the Courant number � is given by

� � c
�t

�x
� ���������

Thus� for the method to be stable� the ampli�cation factor G must satisfy

jGj � �

i�e� q
cos� � � �� sin� � � � ���������

This holds if
j�j � �� ���������

or

c
�t

�x
� �� ����������

Compare this CFL condition to the domain of dependence discussion previously� Note that
here we have a complex number for the ampli�cation� Writing it in polar form�

G � cos � � i� sin� � jGjei	 ����������

where the phase angle � is given by

� � arctan��� tan��� ����������

��	
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Figure ��� Amplitude versus relative phase for various values of Courant number for Lax
Method

A good understanding of the ampli�cation factor comes from a polar plot of amplitude versus

relative phase� ��
�

for various � �see �gure ����

Note that the amplitude for all these values of Courant number never exceeds �� For
� � �� there is no attenuation� For � � �� the low �� � �� and high �� � ��� frequency
components are mildly attenuated� while the mid range frequencies are severly attenuated�

Suppose now we solve the same equation using Lax method but we assume periodic boundary
conditions� i� e�

unm	� � un� ��������	�

The system of equations obtained is

un	� � Aun ����������

where

un �

�
�� un�
� � �
unm

�
�� ��������
�

A �

�
�������������

�
�� �

�
� � � � � � �

�
� � �

�
�

�� �

�
� �

� � � � � �
�� �

�
�� �

�
� � � �

� � �

�
�

�
�������������
� ����������

It is clear that the eigenvalues of A are


j � cos
��

m
�j � �� � i� sin

��

m
�j � ��� j � �� � � � � m � ����������

���



Since the stability of the method depends on

j
�A�j � � � ����������

one obtains the same condition in this case� The two methods yield identical results for
periodic boundary condition� It can be shown that this is not the case in general�

If we change the boundary conditions to

un	�
� � un� ����������

with
un	�
� � un
 ����������

to match the wave equation� then the matrix becomes

A �

�
��������

� � � �
� � �

�
�

�� �

�
�

�
� � �

�
�

�� �

�
� � � �

�
��������
� ����������

The eigenvalues are


� � �� 
� � �� 


� � ��

�

q
��� ���	 � ��� ����������

Thus the condition for stability becomes

�
p
�� � � � �

p
�� �� ��������	�

See work by Hirt ������� Warning and Hyett ������ and Richtmeyer and Morton �������

��




Problems

�� Use a von Neumann stability analysis to show for the wave equation that a simple explicit
Euler predictor using central di
erencing in space is unstable� The di
erence equation is

un	�
j � unj � c

�t

�ax

�
unj	� � unj��

�

�

Now show that the same di
erence method is stable when written as the implicit formula

un	�
j � unj � c

�t

�x

�
un	�
j	� � un	�

j��
�

�

�� Prove that the CFL condition is the stability requirement when the Lax Wendro
 method
is applied to solve the simple ��D wave equation� The di
erence equation is of the form�

un	�
j � unj �

c�t

��x

�
unj	� � unj��

�
�
c� ��t��

� ��x��

�
unj	� � �unj � unj��

�

	� Determine the stability requirement to solve the ��D heat equation with a source term

�u

�t
� �

��u

�x�
� ku

Use the central�space� forward�time di
erence method� Does the von Neumann necessary
condition make physical sense for this type of computational problem�

�� In attempting to solve a simple PDE� a system of �nite�di
erence equations of the form

un	�
j �

�
�� ��� ��� �

� ��� �
�� � ���

�
�� unj �

Investigate the stability of the scheme�

���



����� Euler Explicit Method

Euler explicit method for the �rst order hyperbolic is given by �for c � ��

un	�
j � unj
�t

� c
unj	� � unj

�x
� � ���������

or

un	�
j � unj
�t

� c
unj	� � unj��

��x
� � ���������

Both methods are explicit and �rst order in time� but also unconditionally unstable�

G � �� �

�
��i sin�� for centred di
erence in space� �������	�

G � �� �

�
�i sin

�

�

�
ei��� for forward di
erence in space� ���������

In both cases the ampli�cation factor is always above �� The only di
erence between the
two is the spatial order�

����� Upstream Di
erencing

Euler�s method can be made stable if one takes backward di
erences in space in case c � �
and forward di
erences in case c � �� The method is called upstream di
erencing or upwind
di
erencing� It is written as

un	�
j � unj
�t

� c
unj � unj��

�x
� �� c � �� �����	���

The method is of �rst order in both space and time� it is conditionally stable for � � � � ��
The truncation error can be obtained by substituting Taylor series expansions for unj�� and
unj	� in �����	����

�

�t

�
�tut �

�

�
�t�utt �

�

�
�t
uttt � � � �

�

�
c

�x

�
u�

�
u��xux �

�

�
�x�uxx � �

�
�x
uxxx � � � �

��

where all the terms are evaluated at xj� tn�
Thus the truncation error is

ut � cux � ��t

�
utt � c

�x

�
uxx

��t�

�
uttt � c

�x�

�
uxxx � � � �

�����	���

���



ut ux utt utx uxx

coe�cients of �����	��� � c �t
�

� �c�x
�

��t
�

�
�t

�����	��� ��t
�

�c�t
�

�

c
�
�t �

�x
�����	��� c�t

�
c�

�
�t

�
��
�t� ��

�t�
�����	���

��


c�t� ��

�t�x
�����	���

�
�


c��t� � c�t�x

�

�
��

�x�
�����	���

Sum of coe�cients � c � � c�x
�
�� � ��

Table �� Organizing the calculation of the coe�cients of the modi�ed equation for upstream
di
erencing

The modi�ed equation is

ut � cux � c
�x

�
��� ��uxx � c

�x�

�
���� � 	� � ��uxxx

�O
h
�x
��t�x���x�t���t


i �����	�	�

In the next table we organized the calculations� We start with the coe�cients of truncation
error� �����	���� after moving all terms to the left� These coe�cients are given in the second
row of the table� The �rst row give the partials of u corresponding to the coe�cients� Now
in order to eliminate the coe�cient of utt� we have to di
erentiate the �rst row and multiply
by ��t��� This will modify the coe�cients of other terms� Next we eliminate the new
coe�cient of utx� and so on� The last row shows the sum of coe�cients in each column�
which are the coe�cients of the modi�ed equation�

The right hand side of �����	�	� is the truncation error� The method is of �rst order� If
� � �� the right hand side becomes zero and the equation is solved exactly� In this case the
upstream method becomes

un	�
j � unj��

which is equivalent to the exact solution using the method of characteristics�
The lowest order term of the truncation error contains uxx� which makes this term similar

to the viscous term in one dimensional �uid �ow� Thus when � �� �� the upstream di
erencing
introduces an arti
cial viscosity into the solution� Arti�cial viscosity tends to reduce all
gradients in the solution whether physically correct or numerically induced� This e
ect�
which is the direct result of even order derivative terms in the truncation error is called
dissipation �

���



uttt uttx utxx uxxx

coe�cients of �����	��� �t�

�
� � c�x�

�

��t
�

�
�t

�����	��� ��t�

�
� c�x�t

�
�

c
�
�t �

�x
�����	��� � c�t�

�
� �c� �x�t

�

�
��
�t� ��

�t�
�����	��� �

��
�t� c�t�

��
� �

��


c�t� ��

�t�x
�����	��� ��



c�t� ��



c��t� �

�
�


c��t� � c�t�x

�

�
��

�x�
�����	��� �



c��t� � c�t�x

�
�


c
�t� � c��t�x

�

Sum of coe�cients � � � c�x�

�
���� � 	� � ��

Table 	� Organizing the calculation of the coe�cients of the modi�ed equation for upstream
di
erencing

A dispersion is a result of the odd order derivative terms� As a result of dispersion� phase
relations between waves are distorted� The combined e
ect of dissipation and dispersion is
called di
usion � Di
usion tends to spread out sharp dividing lines that may appear in the
computational region�

The ampli�cation factor for the upstream di
erencing is

ea�t � � � �
�
�� e�i�

�
� �

or
G � ��� � � � cos ��� i� sin � �����	���

The amplitude and phase are then

jGj �
q
��� � � � cos ��� � ��� sin��� �����	�
�

� � arctan
Im�G�

Re�G�
� arctan

�� sin�
�� � � � cos �

� �����	���

See �gure �� for polar plot of the ampli�cation factor modulus as a function of � for
various values of �� For � � ���
� we get values outside the unit circle and thus we have
instability �jGj � ���

The ampli�cation factor for the exact solution is

Ge �
u�t��t�

u�t�
�

eikm�x�c�t	�t��

eikm�x�ct� � e�ikmc�t � ei	e �����	���

���



 Amplification factor modulus for upstream differencing
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Figure ��� Ampli�cation factor modulus for upstream di
erencing

Note that the magnitude is �� and

�e � �kmc�t � ���� �����	���

The total dissipation error in N steps is

��� jGjN�A� �����	���

and the total dispersion error in N steps is

N��e � ��� �����	����

The relative phase shift in one step is

�

�e
�

arctan �� sin �
���	� cos �
��� � �����	����

See �gure �� for relative phase error of upstream di
erencing� For small � �wave number�
the relative phase error is

�

�e
� �� �

�
���� � 	� � ���� �����	����

If
�

�e
� � for a given �� the corresponding Fourier component of the numerical solution has

a wave speed greater than the exact solution and this is a leading phase error� otherwise
lagging phase error�

The upstream has a leading phase error for �
 � � � � �outside unit circle� and lagging
phase error for � � �
 �inside unit circle��

���
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Figure ��� Relative phase error of upstream di
erencing

����� Lax Wendro
 method

To derive Lax Wendro
 method� we use Taylor series

un	�
j � unj ��tut �

�

�
��t��utt �O

�
�t


�
���������

Substitute for ut from the PDE
ut � �cux ���������

and for utt from its derivative

utt � �cuxt � �c��cuxx� � c�uxx �������	�

to get

un	�
j � unj � c

�t

��x

�
unj	� � unj��

�
�

�

�

c���t��

��x��

�
unj	� � �unj � unj��

�
� ���������

The method is explicit� one step� second order with truncation error

T�E� � O
�
��x��� ��t��

�
� �������
�

The modi�ed equation is

ut � cux � �c��x�
�

�
��� ���uxxx � c

��x�


�
���� ���uxxxx � � � � ���������

The ampli�cation factor
G � �� ����� cos ��� i� sin�� ���������

���



and the method is stable for
j�j � �� ���������

The relative phase error is

�

�e
�

arctan
�� sin�

�� ����� cos ��

��� � ���������

See �gure �	 for the ampli�cation factor modulus and the relative phase error� The method
is predominantly lagging phase except for

p
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Figure �	� Ampli�cation factor modulus �left� and relative phase error �right� of Lax Wen�
dro
 scheme
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Problems

�� Derive the modi�ed equation for the Lax Wendro
 method�

��	



For nonlinear equations such as the inviscid Burgers� equation� a two step variation of
this method can be used� For the �rst order wave equation ��������� this explicit two�step
three time level method becomes

u
n	���
j	��� � �unj	� � unj ���

�t��
� c

unj	� � unj
�x

� � ����������

un	�
j � unj
�t

� c
un	���
j	��� � un	���

j����
�x

� �� ����������

This scheme is second order accurate with a truncation error

T�E� � O
�
�x��� ��t��

�
� ����������

and is stable for j�j � �� For the linear �rst order hyperbolic this scheme is equivalent to the
Lax Wendro
 method�

����� MacCormack Method

MacCormack method is a predictor�corrector type� The method consists of two steps� the
�rst is called predictor �predicting the value at time tn	� and the second is called corrector�

Predictor � un	�
j � unj � c

�t

�x

�
unj	� � unj

�
�����
���

Corrector � un	�
j �

�

�

�
unj � un	�

j � c
�t

�x

�
un	�
j � un	�

j��
��
� �����
���

In the predictor� a forward di
erence for ux while in the corrector� a backward di
erence for
ux� This di
erencing can be reversed and sometimes �moving discontinuities� it is advanta�
geous�

For linear problems� this is equivalent to Lax Wendro
 scheme and thus the truncation
error� stability criterion� modi�ed equation� and ampli�cation factor are all identical� We
can now turn to nonlinear wave equation� The problem we discuss is Burgers� equation�

Can do Lab �

���� Inviscid Burgers� Equation

Fluid mechanics problems are highly nonlinear� The governing PDEs form a nonlinear system
that must be solved for the unknown pressures� densities� temperatures and velocities� A
single equation that could serve as a nonlinear analog must have terms that closely duplicate
the physical properties of the �uid equations� i�e� the equation should have a convective
terms �uux�� a di
usive or dissipative term ��uxx� and a time dependent term �ut�� Thus
the equation

ut � uux � �uxx ��������

���



is parabolic� If the viscous term is neglected� the equation becomes hyperbolic�

ut � uux � �� ��������

This can be viewed as a simple analog of the Euler equations for the �ow of an inviscid �uid�
The vector form of Euler equations is

�U

�t
�
�E

�x
�
�F

�y
�
�G

�z
� � ������	�

where the vectors U�E� F� and G are nonlinear functions of the density �
�� the velocity
components �u� v� w�� the pressure �p� and the total energy per unit volume �Et��

U �

�
�������




u

v

w
Et

�
������� � ��������

E �

�
�������


u

u� � p

uv

uw
�Et � p�u

�
������� � ������
�

F �

�
�������


v

uv

v� � p

vw
�Et � p�v

�
������� � ��������

G �

�
�������


w

uw

vw

w� � p
�Et � p�w

�
������� � ��������

In this section� we discuss the inviscid Burgers� equation ��������� As we have seen in a
previous chapter� the characteristics may coalesce and discontinuous solution may form� We
consider the scalar equation

ut � F �u�x � � ��������

and if u and F are vectors
ut � Aux � � ��������

where A�u� is the Jacobian matrix
�Fi
�uj

� Since the equation is hyperbolic� the eigenvalues

of the Matrix A are all real� We now discuss various methods for the numerical solution of
���������

��




������ Lax Method

Lax method is �rst order� as in the previous section� we have

un	�
j �

unj	� � unj��
�

� �t

�x

F n
j	� � F n

j��
�

� ����������
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Figure ��� Solution of Burgers� equation using Lax method

In Burgers� equation

F �u� �
�

�
u�� ����������

The ampli�cation factor is given by

G � cos � � i
�t

�x
A sin� ��������	�

where A is the Jacobian
dF

du
� which is just u for Burgers� equation� The stability requirement

is 



�t�x
umax





 � �� ����������

because umax is the maximum eigenvalue of the matrix A� See Figure �� for the exact

versus numerical solution with various ratios
�t

�x
� The location of the moving discontinuity

is correctly predicted� but the dissipative nature of the method is evident in the smearing of
the discontinuity over several mesh intervals� This smearing becomes worse as the Courant
number decreases� Compare the solutions in �gure ���

���



������ Lax Wendro
 Method

This is a second order method which one can develop using Taylor series expansion

u�x� t��t� � u�x� t� � �t
�u

�t
�

�

�
��t��

��u

�t�
� � � � ����������

Using Burgers� equation and the chain rule� we have

ut � �Fx � �Fuux � �Aux ����������

utt � �Ftx � �Fxt � ��Ft�x�
Now

Ft � Fuut � Aut � �AFx ��������	�

Therefore
utt � � ��AFx�x � �AFx�x � ����������

Substituting in ���������� we get

u�x� t��t� � u�x� t���t
�F

�x
�

�

�
��t��

�

�x

�
A
�F

�x

�
� � � � ��������
�

Now use centered di
erences for the spatial derivatives

un	�
j � unj �

�t

�x

F n
j	� � F n

j��
�

�
�

�

	
�t

�x


� n
An
j	���

�
F n
j	� � F n

j

�
� An

j����
�
F n
j � F n

j��
�o ����������

where

An
j	��� � A

�
unj � unj	�

�

�
� ����������

For Burgers� equation� F �
�

�
u�� thus A � u and

An
j	��� �

unj � unj	�

�
� ����������

An
j���� �

unj � unj��
�

� ����������

The ampli�cation factor is given by

G � �� �
	
�t

�x
A

�

��� cos ��� �i
�t

�x
A sin�� �����������

Thus the condition for stability is 



�t�x
umax





 � �� �����������

���
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Figure �
� Solution of Burgers� equation using Lax Wendro
 method

The numerical solution is given in �gure �
� The right moving discontinuity is correctly
positioned and sharply de�ned� The dispersive nature is evidenced in the oscillation near
the discontinuity�

The solution shows more oscillations when � � �� than when � � �� When � is reduced
the quality of the solution is degraded�

The �ux F �u� at xj and the numerical �ux fj	���� to be de�ned later� must be consistent
with each other� The numerical �ux is de�ned� depending on the scheme� by matching the
method to

un	�
j � unj �

�t

�x

h
fnj	��� � fnj����

i
� �����������

In order to obtain the numerical �ux for Lax Wendro
 method for solving Burgers� equation�
let�s add and subtract F n

j in the numerator of the �rst fraction on the right� and substitute
u for A

un	�
j � unj �

�t

�x

�
F n
j	� � F n

j � F n
j � F n

j��
�

� �

�

�t

�x

�
unj � unj	�

�

�
F n
j	� � F n

j

�
� unj � unj��

�

�
F n
j � F n

j��
��� ���������	�

Recall that F �u� �
�

�
u�� and factor the di
erence of squares to get

fnj	��� �
�

�
�F n

j � F n
j	���

�

�

�t

�x
�unj	����

��unj	� � unj �� �����������

The numerical �ux for Lax method is given by

fnj	��� �
�

�

�
F n
j � F n

j	� �
�x

�t
�unj	� � unj �

�
� ���������
�

���



Lax method is monotone� and Gudonov showed that one cannot get higher order than
�rst and keep monotonicity�

������ MacCormack Method

This method is di
erent than other� it is a two step predictor corrector method� One predicts
the value at time n � � is the �rst step and then corrects it in the second step�

Predictor � un	�
j � unj �

�t

�x

�
F n
j	� � F n

j

�
������	���

Corrector � un	�
j �

�

�

�
unj � un	�

j � �t

�x

�
F n	�
j � F n	�

j��
��
� ������	���

Compare this to MacCormack method for the linear case where F � cu� The ampli�cation
factor and stability requirements are as in Lax Wendro
 scheme� See �gure �� for the
numerical solution of Burgers� equation� Notice the oscillations only ahead of the jump� The
di
erence is because of the switched di
erencing in the predictor�corrector�
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Figure ��� Solution of Burgers� equation using MacCormack method

Note� The best resolution of discontinuities occurs when the di
erence in the predictor
is in the same direction of the propagation of discontinuity�

���



Problems

�� Determine the errors in amplitude and phase for � � ��� if the MacCormack scheme is
applied to the wave equation for �� time steps with � � �
�

�	�



������ Implicit Method

A second order accurate implicit scheme results from

un	�
j � unj �

�t

�

h
�ut�

n � �ut�
n	�

i
j
�O

�
��t�


�
����������

which is based on the trapezoidal rule� Since

ut � �Fx
we can write

un	�
j � unj �

�t

�

h
�Fx�

n � �Fx�
n	�

i
j
� ����������

This is nonlinear in un	�
j and thus requires a linearization or an iterative process� Beam and

Warming suggest to linearize in the following manner

F n	� � F n � F n
u

�
un	� � un

�
� F n � An

�
un	� � un

�
� ��������	�

Thus

un	�
j � unj �

�t

�

�
�F n

x �
�

�x

h
A
�
un	�
j � unj

�i�
� ����������

Now replace the spatial derivatives by centered di
erences and collect terms

� �t

��x
An
j��u

n	�
j�� � un	�

j �
�t

��x
An
j	�u

n	�
j	� �

��t

�x

F n
j	� � F n

j��
�

� �t

��x
An
j��u

n
j�� � unj �

�t

��x
An
j	�u

n
j	��

��������
�

This is a linear tridiagonal system for each time level� The entries of the matrix depend on
time and thus we have to reconstruct it at each time level�

The modi�ed equation contains no even order derivative terms� i�e� no dissipation� Figure
�� shows the exact solution of Burgers� equation subject to the same initial condition as in
previous �gures along with the numerical solution� Notice how large is the amplitude of the
oscillations� Arti�cial smoothing is added to right hand side

��
�

�
unj	� � �unj	� � �unj � �unj�� � unj��

�
where � � � � �� This makes the amplitude of the oscillations smaller� In Figure ��� we
have the solution without damping and with � � �
 after �� time steps using � � �


Another implicit method due to Beam and Warming is based on Euler implicit�

un	� � un ��t �ut�
n	� ����������

un	� � un ��t �Fx�
n	� ����������

�	�
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Figure ��� Solution of Burgers� equation using implicit �trapezoidal� method

with the same linearization

� �t

��x
An
j��u

n	�
j�� � un	�

j �
�t

��x
An
j	�u

n	�
j	� �

��t

�x

F n
j	� � F n

j��
�

� �t

��x
An
j��u

n
j�� � unj �

�t

��x
An
j	�u

n
j	��

����������

Again we get a tridiagonal system and same smoothing must be added�

�	�



Problems

�� Apply the two�step Lax Wendro
 method to the PDE

�u

�t
�
�F

�x
� u

�
u

�x

� �

where F � F �u�� Develop the �nal �nite di
erence equations�

�� Apply the Beam�Warming scheme with Euler implicit time di
erencing to the linearized
Burgers� equation on the computational grid given in Figure �� and determine the steady
state values of u at j � � and j � 	� the boundary conditions are

un� � �� un� � �

and the initial conditions are
u�� � �� u�
 � �

Do not use a computer to solve this problem�
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Figure ��� Computational Grid for Problem �
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���� Viscous Burgers� Equation

Adding viscosity to Burgers� equation we get

ut � uux � �uxx� ��������

The equation is now parabolic� In this section we mention analytic solutions for several
cases� We assume Dirichlet boundary conditions�

u��� t� � u�� ��������

u�L� t� � �� ������	�

The steady state solution �of course will not require an initial condition� is given by

u � u�%u

�
�� e�uReL�x�L���

� � e�uReL�x�L���

�
��������

where

ReL �
u�L

�
������
�

and %u is the solution of the nonlinear equation

%u� �

%u� �
� e��uReL � ��������

The linearized equation �������� is

ut � cux � �uxx ��������

and the steady state solution is now

u � u�

�
�� eRL�x�L���

�� e�RL

�
��������

where

RL �
cL

�
� ��������

The exact unsteady solution with initial condition

u�x� �� � sin kx ���������

and periodic boundary conditions is

u�x� t� � e�k
��t sin k�x� ct�� ���������

The equations �������� and �������� can be combined into a generalized equation

ut � �c� bu�ux � �uxx� ���������

�	�



For b � � we get the linearized Burgers� equation and for c � �� b � �� we get the nonlinear

equation� For c �
�

�
� b � �� the generalized equation ��������� has a steady state solution

u � �c
b

�
� � tanh

c�x� x��

��

�
� �������	�

Hence if the initial u is given by �������	�� then the exact solution does not vary with time�
For more exact solutions� see Benton and Platzman �������

The generalized equation ��������� can be written as

ut � %Fx � � ���������

where
%F � cu�

�

�
bu� � �ux� �������
�

or as
ut � Fx � �uxx� ���������

where

F � cu�
�

�
bu�� ���������

or
ut � A�u�ux � �uxx� ���������

The various schemes described earlier for the inviscid Burgers� equation can also be applied
here� by simply adding an approximation to uxx�

������ FTCS method

This is a Forward in Time Centered in Space �hence the name��

un	�
j � unj
�t

� c
unj	� � unj��

��x
� �

unj	� � �unj � unj��
��x��

� ����������

Clearly the method is one step explicit and the truncation error

T�E� � O
�
�t� ��x��

�
� ����������

Thus it is �rst order in time and second order in space� The modi�ed equation is given by

ut � cux �

�
�� c��t

�

�
uxx � c

��x��

	

	
	r � �� � �

�



uxxx

� c
��x�


��

�
r

�
� 	

r�

�
� �� � ���r � 	�


�
uxxxx � � � �

��������	�

�	




where as usual

r � �
�t

��x��
� ����������

� � c
�t

�x
� ��������
�

If r �
�

�
and � � �� the �rst two terms on the right hand side of the modi�ed equation vanish�

This is NOT a good choice because it eliminated the viscous term that was originally in the
PDE�
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Figure ��� Stability of FTCS method

We now discuss the stability condition� Using Fourier method� we �nd that the ampli��
cation factor is

G � � � �r�cos � � ��� i� sin�� ����������

In �gure �� we see a polar plot of G as a function of � and � for � � � and r �
�

�
and �� � �r

�left� and �� � �r �right�� Notice that if we allow �� to exceed �r� the ellipse describing G
will have parts outside the unit circle and thus we have instability� This means that taking
the combination of the conditions from the hyperbolic part �� � �� and the parabolic part

�r �
�

�
� is not enough� This extra condition is required to ensure that the coe�cient of uxx

is positive� i�e�

c�
�t

�
� �� ����������

Let�s de�ne the mesh Reynolds number

Re�x �
c�x

�
�

�

r
� ����������

then the above condition becomes

Re�x � �

�
� ����������

It turns out that the method is stable if

�� � �r� and r � �

�
� �����������

�	�



This combination implies that � � �� Therefore we have

�� � Re�x � �

�
� �����������

For Re�x � � FTCS will produce undesirable oscillations� To explain the origin of these
oscillations consider the following example� Find the steady state solution of �������� subject
to the boundary conditions

u��� t� � �� u��� t� � � �����������

and the initial condition
u�x� �� � �� ���������	�

using an �� point mesh� Note that we can write FTCS in terms of mesh Reynolds number
as

un	�
j �

r

�
��� Re�x�u

n
j	� � ��� �r�unj �

r

�
�� �Re�x� u

n
j��� �����������
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Figure ��� Solution of example using FTCS method

For the �rst time step
u�j � �� j � ��

and
u��� �

r

�
��� Re�x� � �� u��� � ��

and this will initiate the oscillation� During the next time step the oscillation will propagate
to the left� Note that Re�x � � means that unj	� will have a negative weight which is
physically wrong�

To eliminate the oscillations we can replace the centered di
erence for cux term by a �rst
order upwind which adds more dissipation� This is too much� Leonard ������ suggeted a
third order upstream for the convective term �for c � ��

unj	� � unj��
��x

� unj	� � 	unj � 	unj�� � unj��
��x

�

�	�



������ Lax Wendro
 method

This is a two step method�

u
n	���
j �

�

�

�
unj	��� � unj����

�
� �t

�x

�
F n
j	��� � F n

j����
�

� r
h�
unj�
�� � �unj���� � unj	���

�
�
�
unj	
�� � �unj	��� � unj����

�i ����������

The second step is

un	�
j � unj �

�t

�x

�
F
n	���
j	��� � F

n	���
j����

�
� r

�
unj	� � �unj � unj��

�
� ����������

The method is �rst order in time and second order in space� The linear stability condition
is

�t

��x��
�
A��t � ��

�
� �� ��������	�

Can do problem �	

������ MacCormack method

This method is similar to the inviscid case� The viscous term is approximated by centered
di
erences�

Predictor � un	�
j � unj �

�t

�x

�
F n
j	� � F n

j

�
� r

�
unj	� � �unj � unj��

�
������	���

Corrector � un	�
j �

�

�

�
unj � un	�

j � �t

�x

�
F n	�
j � F n	�

j��
��

� r
�
un	�
j	� � �un	�

j � un	�
j��

�
�

������	���
The method is second order in space and time� It is not possible to get a simple stability
criterion� Tannehill et al ����
� suggest an empirical value

�t � ��x��

jAj�x � ��
� ������	�	�

This method is widely used for Euler�s equations and Navier Stokes for laminar �ow�
In multidimensional problems there is a time�split MacCormack method� An interesting
variation when using relaxation is as follows

Predictor � vn	�
j � unj �

�t

�x

�
F n
j	� � F n

j

�
� r

�
unj	� � �unj � unj��

�
������	���

�	�



un	�
j � unj � �P

�
vn	�
j � unj

�
� ������	�
�

Corrector � vn	�
j � un	�

j � �t

�x

�
F n	�
j � F n	�

j��
�
� r

�
un	�
j	� � �un	�

j � un	�
j��

�
� ������	���

un	�
j � unj � �C

�
vn	�
j � unj

�
� ������	���

Note that for �P � �� �C �
�

�
one gets the original scheme� In order to preserve the order

of the method we must have
�C�P �




�P � �C



 � ������	���

A necessary condition for stability


��P � ����C � ��



 � �� ������	���

This scheme accelerates the convergence of the original scheme by a factor of

��P�C

�� ��P � ����C � ��
� ������	����

������ Time�Split MacCormack method

The time�split MacCormack method is speci�cally designed for multidimensional problems�
Let�s demonstrate it on the two dimensional Burgers� equation

ut � F �u�x �G�u�y � � �uxx � uyy� ����������

or
ut � Aux �Buy � � �uxx � uyy� � ����������

The exact steady state solution of the two dimensional linearized Burgers� equation on a
unit square subject to the boundary conditions

u�x� �� t� �
�� e�x���c��

�� e�c��
� u�x� �� t� � �� ��������	�

u��� y� t� �
�� e�y���d��

�� e�d��
� u��� y� t� � �� ����������

is
u�x� y� � u�x� �� t�u��� y� t�� ��������
�

All the methods mentioned for the one dimensional case can be extended to higher dimensions
but the stability condition is more restrictive for explicit schemes and the systems are no

�	�



longer tridiagonal for implicit methods� The time split MacCormack method splits the
original MacCormack scheme into a sequence of one deimensional equations�

un	�
ij � Ly

	
�t

�



Lx ��t� Ly

	
�t

�



unij� ����������

where the operators Lx ��t� and Ly ��t� are each equivalent to the two step formula as
follows

u�ij � Lx ��t� u
n
ij� ����������

means

u�ij � unij �
�t

�x

�
F n
i	� j � F n

ij

�
� ��t%��xu

n
ij� ����������

u�ij �
�

�

�
unij � u�ij �

�t

�x

�
F �
i j � F �

i�� j
��

� ��t%��xu
�
ij� ����������

and
u�ij � Ly ��t� u

n
ij� �����������

means

u�ij � unij �
�t

�y

�
Gn
i j	� �Gn

ij

�
� ��t%��yu

n
ij� �����������

u�ij �
�

�

�
unij � u�ij �

�t

�y

�
G�
i j �G�

i j��
��

� ��t%��yu
�
ij� �����������

The truncation error is
T�E� � O

�
��t�� � ��x�� � ��y��

�
� ���������	�

In general such a scheme is stable if the time step of each operator doesn�t exceed the
allowable size for that operator� it is consistent if the sum of the time steps for each operator
is the same and it is second order if the sequence is symmetric�

���



���� Appendix � Fortran Codes

C�����������������������������������������������������������������������

C� PROGRAM FOR THE EXPLICIT SOLVER FOR THE HEAT EQUATION �

C� IN ONE DIMENSION �

C� DIRICHLET BOUNDARY CONDITIONS �

C� LIST OF VARIABLES �

C� I LOCATION OF X GRID POINTS �

C� J LOCATION OF T GRID POINTS �

C� U�I�J� TEMPERATURE OF BAR AT GRID POINT I�J �

C� K TIME SPACING �

C� H X SPACING �

C� IH NUMBER OF X DIVISIONS �

C� R K	H��
 �

C� NT NUMBER OF TIME STEPS �

C� IFREQ HOW MANY TIME STEPS BETWEEN PRINTOUTS �

C�����������������������������������������������������������������������

DIMENSION U�����
��X�����

REAL K

C� SPACING

NT����

IFREQ��

R�
�

IH � ��

PRINT ���

READ ����� TF

��� FORMAT��X��PLEASE TYPE IN THE FINAL TIME OF INTEGRATION��

PRINT ���

READ����� IH

��� FORMAT��X��PLEASE TYPE IN THE NUMBER OF INTERIOR GRID POINTS��

PRINT ���

READ ����� R

��� FORMAT��X��PLEASE TYPE IN THE RATIO R��

H � �
�	IH

IH� � IH� �

K � R�H��


NT�TF	K��

WRITE������ K���K�� H���H�� R���R�� TF���TF�� NT���NT

C CALCULATIONS

DO 
� I � ��IH�

C INITIAL CONDITIONS

X�I���I��
��H

U�I��� � 

����
��X�I��

IF �X�I� 
LE
 
� � U�I��� � 

��X�I�

���




� CONTINUE

TIME � �


WRITE���
�
�TIME��U�L����L���IHH�


�
 FORMAT�		
X��AT T ���F�
�	��X��E��
���

DO �� J � ��NT

C BOUNDRY CONDITIONS

U�� �
� � �
�

U�IH��
� � �
�

DO �� I � 
�IH

U�I �
� � R�U�I����� � ��
��

��R��U�I��� � R�U�I�����

�� CONTINUE

DO 
� L���IH�


� U�L����U�L�
�

TIME�TIME�K

IF�J	IFREQ�IFREQ
EQ
J� WRITE���
�
�TIME��U�L����L���IHH�

�� CONTINUE

RETURN

END

���



C THIS PROGRAM SOLVES THE HEAT EQUATION IN ONE DIMENSION

C USING CRANK�NICHOLSON IMPLICIT METHOD
 THE TEMPERATURE AT

C EACH END IS DETERMINED BY A RELATION OF THE FORM AU�BU��C

C PARAMETERS ARE �

C U VALUES OF TEMPERATURE AT NODES

C T TIME

C TF FINAL TIME VALUE FOR WHICH SOLUTION IS DESIRED

C DT DELTA T

C DX DELTA X

C N NUMBER OF X INTERVALS

C RATIO RATIO OF DT	DX��


C COEF COEFFICIENT MATRIX FOR IMPLICIT EQUATIONS

REAL U������COEF��������RHS������X�����

DATA T	�
	�TF	����
	�N	
�	�RATIO	�
	

C THE FOLLOWING STATEMENT GIVE THE BOUNDARY CONDITION AT X��


C A�B�C ON THE LEFT

C U��

��U����

DATA AL	�

	�BL	�
�	�CL	��
�	

C THE FOLLOWING STATEMENT GIVE THE BOUNDARY CONDITION AT X��


C A�B�C ON THE RIGHT

C U����

DATA AR	�
	�BR	�
	�CR	���
	

PRINT ���

READ ����� TF

��� FORMAT��X��PLEASE TYPE IN THE FINAL TIME OF INTEGRATION��

PRINT ���

READ����� N

��� FORMAT��X��PLEASE TYPE IN THE NUMBER OF INTERIOR GRID POINTS��

PRINT ���

READ ����� RATIO

��� FORMAT��X��PLEASE TYPE IN THE RATIO R��

JJ��

DX��
	N

DT�RATIO�DX�DX

NP��N��

C EVALUATE THE MESH POINTS

DO � I���NP�

� X�I���I����DX

C WRITE OUT HEADING AND INITIAL VALUES

WRITE���
��� DX


�� FORMAT����	
X��FOR X � �
 TO X ��
 WITH DELTA X OF��

� F�
��

C COMPUTES INITIAL VALUES

DO 
 I���NP�

��	




 U�I�����
���
�ABS�X�I����
�

WRITE���
�
� T��U�I��I���NP��


�
 FORMAT�		
X��AT T ���F�
�	��X��E��
���

C ESTABLISH COEFICIENT MATRIX

C LET ALPHA��A	B

C LET BETA � C	B

C AT LEFT ���
�ALPHA�DX��U���J����
�U�
�J����

C 
�ALPHA�DX�U���J��
�U�
�J����BETA�DX

C AT INTERIOR �U�I���J������U�I�J����U�I���J����

C U�I���I��U�I���J�

C AT RIGHT ��
�U�N�J�������
�ALPHA�DX��U�N���J����

C 
�U�N�J��
�ALPHA�DX�U�N���J����BETA�DX

IF�BL
EQ
�
� GO TO ��

COEF���
�� 

	RATIO�

�

�AL�DX	BL

COEF�������



GO TO 
�

�� COEF���
���


COEF�������



� DO 
� I�
�N

COEF�I������


COEF�I�
��

	RATIO�



COEF�I������



� CONTINUE

IF�BR
EQ
�
� GO TO ��

COEF�N�������



COEF�N���
�� 

	RATIO�

�

�AR�DX	BR

GO TO ��

�� COEF�N�������


COEF�N���
���


C GET THE LU DECOMPOSITION

�� DO �� I�
�NP�

COEF�I������COEF�I�����	COEF�I���
�

COEF�I �
��COEF�I�
��COEF�I����COEF�I�����

�� CONTINUE

C CALCULATE THE R
H
S
 VECTOR � FIRST THE TOP AND BOTTOM ROWS

�� IF�BL
EQ
�� GO TO ��

RHS�����

	RATIO�

�

�AL�DX	BL��U����

�U�
��

� �
�CL�DX	BL

GO TO ��

�� RHS����CL	AL

�� IF�BR
EQ
�� GO TO ��

RHS�N����

�U�N���

	RATIO�

�AR�DX	BR��U�N����

� �
�CR�DX	BR

���



GO TO ��

�� RHS�N����CR	AR

C NOW FOR THE OTHER ROWS OF THE RHS VECTOR

�� DO ��� I�
�N

��� RHS�I��U�I�����

	RATIO�

��U�I��U�I���

C GET THE SOLUTION FOR THE CURRENT TIME

U����RHS���	COEF���
�

DO ��� I�
�NP�

��� U�I���RHS�I��COEF�I����U�I����	COEF�I�
�

DO �
� I���N

JROW�N�I��

�
� U�JROW��U�JROW��COEF�JROW����U�JROW���

C WRITE OUT THE SOLUTION

T�T�DT

JJ�JJ��

WRITE���
�
� T��U�I��I���NP��

IF�T
LT
TF� GO TO ��

STOP

END

��
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